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Local modes and localization in a multicomponent nonlinear lattice
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The existence, stability, and the conditions for the formation of nonlinear localized modes are investigated
in a two-component one-dimensional lattice. In spite of their possible coupling with acoustic phonons, discrete
breathers can exist as exact stable solutions or show a very slow decay. Nonlinear energy localization through
energy exchange between localized excitations, exhibited previously for a one-component lattice@T. Dauxois
and M. Peyrard, Phys. Rev. Lett.70, 3935~1993!# is more general and also valid in a multicomponent lattice.
A self-localization of thermal fluctuations is also observed in such a system. The model is used to investigate
the effect of bending proteins on DNA. It shows that a bend can collect the energy of moving localized modes
or insulate one part of the molecule from transfers of energy from large amplitude excitations in other parts.
@S1063-651X~97!05504-9#

PACS number~s!: 03.40.Kf, 63.20.Pw, 87.10.1e
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I. INTRODUCTION

Numerous studies have been devoted to localized mo
in nonlinear lattices because they provide examples of lo
ized excitations inhomogeneouslattices, i.e., in the absenc
of any disorder. Approximate solutions have been obtai
for one-dimensional or multidimensional lattices@1# and a
proof of existence of time-periodic, spatially localized, so
tions, or breathers, has been given for a broad range
Hamiltonian coupled oscillators lattices@2,3#. Moreover, a
spontaneouslocalization of energy in such lattices has be
found and it has been shown that it can occur through ene
exchange between interacting moving breathers@4#.

However, these studies have considered lattices withone
degree of freedom per sitewhile most of the physical sys
tems are multicomponent systems. Extending the results
multicomponent lattice is not necessarily trivial because
teractions among the various degrees of freedom could
stroy the local modes since they provide additional pathw
for energy flow in the lattice. Our aim here is to conside
simple example of a multicomponent system and investig
to what extent the properties of simpler nonlinear lattic
remain valid. The model that we have considered is a tw
chain model for describing the dynamics of DNA and
thermal denaturation@5#. It has been chosen because it pr
vides a simple two-component model to examine the qu
tions listed above, and because it may be relevant to s
some important biological properties of DNA, such as t
relation between bending and local opening, which may
significant for the initiation of the transcription since th
RNA polymerase bends DNA locally while it creates t
transcription bubble@6,7#, or the possible exchange of en
ergy between acoustic and optical modes in the molec
which could be stimulated, for instance, by ultrasonic ex
tations.

The questions that we have particularly examined are
following: ~i! the existence and stability of local modes in
two-chain nonlinear lattice~Sec. III!, ~ii ! the interactions be-
551063-651X/97/55~4!/4740~17!/$10.00
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tween local modes as a mechanism for energy localiza
~Sec. IV!, and~iii ! the role of bending on DNA local openin
~Sec. V!.

II. MODEL

The Hamiltonian of the system is

H85(
n

1

2
mF S dundt8 D 21S dvndt8 D 2G1

1

2
k~un112un!

2

1
1

2
k8~vn112vn!

21D$exp@2a~un2vn!#21%2.

~1!

The two degrees of freedom per cell,un andvn , describe
the transverse displacements of the two bases belongin
the base pair labeled by indexn in the DNA molecule@5#.
The coupling of two nucleotides along the same strand
assumed to be harmonic, with coupling constantsk andk8.
Paired bases in DNA are always different from each other
a homopolymer formed, for instance, only of adenin
thymine ~A-T! pairs, the interactions along the two stran
involve the stacking of bases with a single cycle on o
strand, while on the other strand two-cycle bases are stac
In natural DNA with a complicated base sequence, the
ferences between the two strands tend to be averaged
but, on a segment of the molecule with a size of the orde
the size of a transcription bubble, i.e., 20 base pairs,
difference between the strands is still very large. To app
ciate this, one may notice that the stacking energies of
different base pairs in DNA vary at a ratio of 1 to 6, depen
ing on the stacked bases@8#. Moreover, if the molecule is
bent, this brings the bases inside the bend closer to e
other, and increases their interaction significantly, which
another cause for the absence of symmetry between the
strands. Therefore,k and k8 can be very different. As we
shall see below, this has important consequences. The i
action between the two bases in a pair is modeled by a Mo
4740 © 1997 The American Physical Society
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55 4741LOCAL MODES AND LOCALIZATION IN A . . .
potential, which represents the hydrogen bonds coupling
bases, as well as the repulsive interaction between the p
phate groups.

Introducing dimensionless displacementsUn5aun and
Vn5avn , and a dimensionless timet5t8Am/Da2, we get a
dimensionless HamiltonianH5H8/D under the form

H5(
n

1

2 F S dUn

dt D 21S dVndt D 2G1
1

2
K~Un112Un!

2

1
1

2
K8~Vn112Vn!

21$exp@2~Un2Vn!#21%2, ~2!

where the dimensionless coupling constants areK5k/Da2,
K85k8/Da2.

The equations of motion deriving from Hamiltonian~2!
are

d2Un

dt2
5K~Un111Un2122Un!

12e2~Un2Vn!~e2~Un2Vn!21!, ~3a!

d2Vn

dt2
5K8~Vn111Vn2122Vn!

22e2~Un2Vn!~e2~Un2Vn!21!. ~3b!

It is interesting to consider the new variables

Xn5
Un1Vn

A2
, Yn5

Un2Vn

A2
, ~4!

whereXn describes the acoustic motions of the two-ch
system, whileYn corresponds to the stretching of the bo
connecting the two strings. If we introduce the coupling co
stants

K15
K1K8

2
, K25

K2K8

2
, ~5!

the equations of motion become

d2Xn

dt2
2K1~Xn111Xn2122Xn!

5K2~Yn111Yn2122Yn!, ~6a!

d2Yn

dt2
2K1~Yn111Yn2122Yn!2

4

A2
e2A2Yn~e2A2Yn21!

5K2~Xn111Xn2122Xn!. ~6b!

Equations~6! show that, for the symmetric caseK5K8,
i.e.,K250, theX andY motions are decoupled. The acou
tic motions are then simply linear and nonlinearity shows
only in the stretching modeY. In this case, a separate stud
of the stretching motion is possible. We are interested her
the more general caseKÞK8, so that theX andY motions
are not independent of each other.

The dispersion relations of the small amplitude waves
frequencyv and wave vectorq are given by
e
os-

-

p

in

f

v252S 112K1sin
2
q

2D62A114K2
2 sin4~q/2!, ~7!

where the1 sign corresponds to the optical branch~which
involves only the stretchingY if K250) and the2 sign
corresponds to the acoustic branch~which involves onlyX if
K250). Figure 1 shows these dispersion relations in t
typical cases, a weak coupling caseK150.1 and a stronger
couplingK150.6. The coupling between the two motion
for K2Þ0 shows up in the modification of the dispersio
relation. WhenK2 increases, the optical band reaches hig
values for largeq while the maximum acoustic frequenc
decreases, increasing the gap between the acoustic and
cal bands which exists as long as the coupling is not
large. However, as shown in Fig. 1, the change is only s
nificant at large coupling.

III. EXISTENCE AND STABILITY OF LOCAL MODES

A. Existence and exact solutions

For Hamiltonian lattices of coupled nonlinear oscillato
with a one-component degree of freedom, a rigorous proo
the existence of nonlinear localized modes has been obta
@2,3#. Such modes exist, provided that the coupling is bel
a threshold which depends on their amplitude. This proo

FIG. 1. Dispersion curves of the two-chain model.~a!
K150.1, K250 ~full lines! and K250.08 ~dashed lines!, ~b!
K150.6,K250 ~full lines! andK250.4 ~dashed lines!.
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4742 55KYLE FORINASH, THIERRY CRETEGNY, AND MICHEL PEYRARD
also valid for the two-chain model ifK250, because then
the Y degree of freedom, which carries the nonlinearity,
totally decoupled fromX and can be studied separately.
this case Eq.~6b! reduces to

Fn~Y,K1!5Ÿn1K1~Yn111Yn2122Yn!1V8~Yn!50, ~8!

whereV(Y)5D@exp(2A2Y)21#2 is the on-site potential.
The idea of the proof is to consider theanticontinuum

limit K1→0, where the coupling vanishes. In this limit, th
existence of localized solutions is trivial because the osc
tors are uncoupled. The localized modes that we are look
for here arebreathers, i.e., oscillatory modes characterize
by a given frequencyV. Therefore, among all the possib
solutions in the anticontinuum limit, only the solutions th
satisfy the following conditions are considered:~i! for all n
Yn(t) is periodic in timeYn(t)5Yn(t12p/V); ~ii ! the so-
lution is time reversibleYn(t)5Yn(2t) . Such solutions can
be characterized by a set of numbers defining a code$sn%,
such thatsn50 when an oscillator is at rest,sn5m if the
frequency of thenth oscillator ismV (m integer! and its
phase att50 is 0, andsn52m if the frequency ismV and
the initial phase isp. In particular, the anticontinuum limi
solution which corresponds to a breather centered on the
n0 is simply defined bysn0

51 andsn50 if nÞn0.

It is remarkable that the trivial solution ofF(Y,0)50 for
decoupled oscillators has a unique continuationYn(t,K1)
for finite couplingK1 , as long as the coupling is below
given thresholdK1,Kc ; conditions for this continuation
are~i! ]v(I )/]IÞ0 for the frequenciesiV that appear in the
code $sn% of the configuration, whereI is the action of a
single oscillator represented in action-angle variables,~ii !
mVÞAV9(0) for allm appearing in the code of the configu
ration. The first condition implies that the oscillators must
nonlinear, as their frequency depends on their action. T
condition is easy to understand intuitively because we c
sider a lattice made of identical oscillators. If they were l
ear, any excitation of one of them would be in exact re
nance with the neighbors and any weak coupling wo
allow the energy of an excited site to be transferred to
neighbors. The second condition, which could be relaxe
one looks at nonlocalized solutions, such thatsnÞ0 for all
n, is also a nonresonance condition. The breather freque
V and its harmonics that enter in the solution must not re
nate with the linear frequency of the oscillators. Among
the solutions defined by their code$sn%, the breather solu-
tion sn0

51 andsn50 if nÞn0 is characterized by an ex

ponential decay of the amplitude as a function ofun2n0u.
ForK2Þ0, theX andY degrees of freedom are couple

However,the proof of existence of localized oscillatory s
lutions can be extendedto this multicomponent system@10#.
The method amounts to eliminating the acoustic variab
which is coupled to the optical one, through the dynami
equations of motions. For a one-dimensional lattice this
always possible and the theorem established for a o
component model can be extended to the two-chain mo
that we consider here, so that the existence of locali
breather modes at low coupling can also be established.

Moreover, the introduction of the anticontinuum lim
goes beyond a proof of existence because it can also pro
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a numerical method to actually derive an exact solution@11#.
Let us denote, by the generic notationqi , the degrees of
freedom corresponding to the positionsXi and Yi and by
pi the conjugate variables. A breather of periodTb is a fixed
point of the operatorT which associates the configuration
time Tb to a given initial configuration (q,p)5($qi%$pi%).
Moreover, as the equations of motion are invariant un
time reversal, we can restrict the search to initial configu
tions where all the sites are initially at rest (pi50 ; i ), i.e.,
we start from a maximum of the breather amplitude. ForN
sites,T is therefore, an application fromR2N ~for the two-
component model! to R4N. Finding an exact solution of pe
riod Tb amounts, therefore, to finding a zero of the opera

O~q!5T~q,0!2~q,0!. ~9!

The numerical method solves this equation by expand
O(q) around an approximate solutionq0 as

O~q!5O~q0!1A3~q2q0!, ~10!

whereA is a 4N32N matrix, and minimizing the norm of
O(q) with respect toq. Using energy conservation one cou
restrict the calculation to the first 2N componentsqi since, if
the initial positions are exactly reproduced at timeTb , the
momenta have to vanish to conserve energy. The antic
tinuum limit provides the necessary approximate solut
q0 because, in the limit of vanishing coupling, the breath
reduces to the motion of a particle in the Morse poten
which can be solved exactly. The numerical method sta
from the exact solution withK15K250 and increases the
coupling in small steps. For each step, Eq.~9! is solved with
a starting approximate solutionq0 which is the exact solu-
tions obtained at the previous step. Although the principle
the calculation is simple, there are several technical proble
which are discussed in@11,16#. For instance, when the sys
tem has solutions at frequency 0~such as the acoustic trans
lational mode of the two-component chain! or multiple of the
breather frequencyvb52p/Tb , the reduced 2N32N ma-
trix A is not invertible, although Eq.~9! has an exact solu
tion.

When the exact solution has been found, its linear sta
ity can be investigated by the Floquet method, i.e., by lo
ing for the time evolution over one period of a small pertu
bation „dq(0),dp(0)…. A linearization leads to the value o
the perturbation at timeTb as

„dq~Tb!,dp~Tb!…5F3„dq~0!,dp~0!…, ~11!

whereF is the Floquet matrix. The solution is stable if th
perturbation decays in time; i.e., the modulus of all the
genvalues ofF is lower or equal to 1~the eigenvalue 1 is
always present and simply corresponds to a time transla
of the breather solution!.

B. Approximate solution

Since we have an exact solution, one may won
whether it is useful to look for an approximate solutio
However, the exact solution can only be obtained num
cally, and, moreover, only nonmoving modes can be
tained. The lattice breaks the continuous translation andex-
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55 4743LOCAL MODES AND LOCALIZATION IN A . . .
act moving solutions do not exist. However, when t
coupling is sufficient or when the amplitude of the loc
mode is small, approximate moving solutions can exist.
though we expect these solutions to be trapped by discr
ness effects@9#, they can be relevant in a physical system,
particular as transient states leading to energy localiza
~See Sec. IV!. They can be obtained analytically in the co
tinuum limit with a multiple scale expansion if the couplin
constantK2 is sufficiently small. The nonlinear term of Eq
~6b! is expanded as

4

A2
e2A2Yn~e2A2Yn21!54~Yn1aYn

21bYn
3!,

with a52 3
2A2, b5 7

3 . ~12!

If we look for solutions of ordere, X5ec andY5ef, with
K15c0

2 being of order 1 whileK25ec80
2 is assumed to be

of ordere, Eqs.~6a! in the continuum limit become

]2c

]t2
2c0

2 ]2c

]x2
5ec80

2]
2f

]x2
, ~13!

]2f

]t2
2c0

2 ]2f

]x2
1v0

2~f1eaf21e2bf3!5ec80
2]

2c

]x2
,

~14!

where we have introduced the constantv0
254 for convenient

tracking of the various contributions in the following formu
las. Looking for a solution of the form

f5f01ef11e2f2, c5c01ec11e2c2 , ~15!

where the functionsc i andf i depend on the multiple scal
variables T05t, T15et, T25e2t and X05x, X15ex,
X25e2x, at ordere0 we get

f05A~X1 ,T1 ,X2 ,T2!e
i ~q1X02v1T0!1c.c.5Aeiu11c.c., ~16!

c05B~X1 ,T1 ,X2 ,T2!e
i ~q2X02v2T0!1c.c.5Beiu21c.c., ~17!

where the phase factorsu1 andu2, which depend on the fas
variablesX0 ,T0, can be chosen independently, provided t
v1 andv2 obey the continuous dispersion relations

v1
25v0

21c0
2q1

2 v2
25c0

2q2
2. ~18!

This freedom in the selection of the phase factors com
from the assumption thatK2 is of the ordere.

At order e, the cancellations of the secular terms give t
conditions

]A

]T1
52Vg1

]A

]X1
with Vg15

q1c0
2

v1
, ~19a!

]B

]T1
52Vg2

]B

]X1
with Vg25

q2c0
2

v2
, ~19b!

and the solution of the remaining equations gives the fi
order contributions
l
-
te-

n

t

s

e

t

f15aS 22UAU21 1

3
A2e2iu11

1

3
A* 2e22iu1D

2
q2
2c80

2

v0
2 ~Beiu21B* e2 iu2!, ~20a!

c15
q1
2c80

2

v0
2 ~Aeiu11A* e2 iu1!. ~20b!

Finally, at ordere2, the cancellations of the secular term
give equations forA andB.

For A we obtain

i
]A

]t2
1P

]2A

]j1
2 1QuAu2A2RA50, ~21!

with

P5
c0
2v0

2

2v1
3 , Q5

v0
2

2v1
S 103 a223b D , R5

q1
4c80

4

2v1v0
2.

~22!

Equation~21! is written in the frame moving at speedVg1,
i.e., j15X12Vg1T1, t25T2. It can be brought to the stan
dard nonlinear Schro¨dinger ~NLS! form by defining
A5A8exp(2iRt2) to get

i
]A8

]t2
1P

]2A8

]j1
2 1QuA8u2A850. ~23!

For the parametersv0, a, b considered here, the produc
PQ is positive and the equation has the standard sol
solution of amplitudeA0 and envelope velocityve

A85A0sech@A~Q/2P!A0~j12vet2!#expS i vej12P D
3expF2 i S ve24P2

QA0
2

2 D t2G . ~24!

For B we obtain thelinear equation

i
]B

]T2
1

q2
4c80

4

2v2v0
B50. ~25!

This equation has plane wave solutions. Therefore, if
look for localized modes, we must choseB50.

Using Eqs.~15!, ~20a!, and~24!, one can get the expres
sion for theX andY solutions up to ordere. The expansion
parametere can be eliminated if we express the solution a
function of the amplitudea05eA0, envelope velocity
Ve5eve , and wave vectorq1, and we get

Y~x,t !52a0sech$v1A~d/2Kp!a0@x2~Vg11Ve!t#%

3cos~kx2Vt !1A2 a0
2sech2$v1A~d/2Kp!

3a0@x2~Vg11Ve!t#%@32cos~2kx22Vt !#,

~26a!



ith
a
o-

in
ud

in
s,
th
p

th
ge
ic

i

es

o
i

nt
a

tl
t

s,

ilit
f
-

ic
f

is

-
ing
r or
in-
he
nter
sult

not
tion
n in

red
o-
is

the
two

.
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X~x,t !52
q1
2K2

v0
2 a0sech$v1A~d/2Kp!

3a0@x2~Vg11Ve!t#%cos~kx2Vt !, ~26b!

where

v1
25v0

21K1q1
2, v0

254, ~27a!

k5q11
Vev1

3

K1v0
2, Vg15

q1K1

v1 ,
~27b!

V5v12a0
2d

v0
2

4v1
1

~Ve12Vg1!Vev1
3

2v0
2K1

1
q1
4K2

2

2v1v0
2 ,

d5
10

3
a223b58. ~27c!

C. Numerical tests of existence and stability

The exact solutions derived above for a finite chain w
periodic boundary conditions can be tested for stability in
infinite lattice by numerically solving the equations of m
tion ~3!. An initial condition is calculated for a lattice with
N0 cells, chosen large enough to include all the doma
where the breather oscillations have a significant amplit
~more than'1027 the maximum amplitude!. Depending on
the coupling constant this may require 20<N0<40. Then
this solution is embedded in a much larger lattice includ
N cells (N5100 or 200) with two end regions of 10 cell
where we introduce damping that grows linearly toward
ends. These damped regions can absorb all the small am
tudes waves that could be emitted by an unstable brea
Simulations have been performed with a fifth order Run
Kutta scheme or a fourth order symplectic integrator wh
guarantees a perfect energy conservation@12,13#. With a
time stepDt50.01, in the absence of damping, the energy
conserved to a relative accuracy of 1027 over a whole simu-
lation. This does not depend on the total time interval inv
tigated ~typically 20 000 to 80 000 time units! because the
symplectic integrator prevents any drift of the mean value
the energy, although the energy may fluctuate around
mean value when the time step is large. Using such an i
grator allows us to check the stability of a breather by c
culating the energyE0 within the domain sizeN0 that con-
tained the initial breather. When the breather is perfec
stable, the simulation checks thatE0 stays exactly constan
~to an accuracy of 1027). If there is an instability, even very
weak, energy flows away from the domain of sizeN0. Thus
E0 differs from the total energyE and, when the emitted
waves reach the damped domains near the boundarieE
starts to decrease.

1. K5K8, one-component system

In order to understand the possible sources of instab
of a breather, it is useful to start from the simplest case o
symmetric modelK5K8, which is equivalent to a one
component model for the optical motionY. The proof of
existence indicates that breathers exist only below a crit
coupling Kc , but it does not provide an explicit value o
n
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Kc . Numerical tests show that, as far as theexistenceof an
solution is concerned, the maximum allowed coupling
high. Figure 2~a! shows an example withK5K850.6 for a
breather frequencyV51.6. The Floquet analysis finds, how
ever, one eigenvalue equal to 1.3 for this solution, indicat
a rather strong instability. The corresponding eigenvecto
the numerical simulation can explain the reason for this
stability: in the simulation, after a very short transient t
breather radiates a small amount of energy and its ce
moves by half a lattice spacing. We recover here a re
previously found for a discretef4 model @14,15#: in a dis-
crete lattice a breather centered on a lattice site does
always correspond to the stable solution. The stable solu
for the same coupling constants and frequency is show
Fig. 2~b!. It can be viewed as a breather centeredbetween
two lattice sites and will, henceforth, be called a noncente
breather. In the language of the anticontinuum limit this s
lution should rather be called a ‘‘multibreather,’’ since it
generated by the initial excitation of two sites~its code
$sn% is given bysn0

51 , sn02151, all othersn50). For

the whole zone of the parameter space (K1 ,V) which was
explored, the centered and noncentered breathers have
same domain of existence, and generally only one of the
is stable~the one with maximum action*0

TL dt, whereT is

FIG. 2. Exact breather solution forK5K850.6, V51.6. ~a!
One-breather solution~centered breather!. This solution is unstable
~b! Stable two-breather solution~noncentered breather!. The dia-
monds and crosses show the initial positions ofUn andVn , respec-
tively.
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55 4745LOCAL MODES AND LOCALIZATION IN A . . .
the period of the breather andL the Lagrangien of the sys
tem! while the other is unstable@16#. Thus some instabilities
such as in the preceding example, are not of physical
evance; they merely imply that, at this frequency, the sta
solution is not the one-breather solution but the noncente
‘‘bibreather.’’

This simple example illustrates one channel by which
single breather can become unstable. However, in suc
case, this does not mean that a localized solution with
same frequency does not exist, but merely that the st
solution is not the ‘‘one-breather’’ solution. There are mo
fundamental sources of instability. Figure 3~a! shows the ex-
act solution obtained forK5K850.1,V51.04. In this case
the amplitude of the oscillations does not decay when
moves away from the breather center. The breather app
to be superimposed on a plane wave of optical characte
theU andV displacements are in opposition of phase. In
Floquet analysis made on a lattice withN0540 cells with
periodic boundary conditions, this solution is found to
linearly stable.However, this is not the case when it is us
as an initial condition for a simulation in a longer chain wi
absorbing ends. Energy flows away from the initial dom
as the plane wave tends to spread out. This decay in brea
energy is accompanied by a slight increase in breather
quency until the frequency reachesV851.0512. Then the

FIG. 3. Breather shape forK5K850.1 andV51.04 ~a! such
that 2 V is within the optical band orV51.06 ~b! for which
2 V is above the optical band. The diamonds and crosses show
initial positions ofUn andVn , respectively.
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breather no longer evolves. This behavior is easy to und
stand because the initial condition was such that 2V was
inside the optical phonon band.Due to the nonlinearity of
the Morse potential the oscillation at frequencyV also gen-
erated a 2V contribution, which was responsible for th
plane wave superimposed on the breather. In a finite lat
with periodic boundary conditions, this situation is comp
ible with a finite energy excitation which could be stable,
shown by the Floquet analysis. But in an infinite lattice,
the optical phonons are nonlocalized excitations, the solu
can no longer be stable, unless it includes a phonon whic
infinitely extended and therefore has an infinite energy. T
is why the initial condition localized in the region of siz
N0 decays. As the energy and frequency of a breather
linked, the decay causes a frequency shift until 2V is above
the optical band. This particular example indicates that
second condition of existencemVÞAV 9(0), obtained in the
anticontinuum limit, has to be extended to a nonresona
condition with the full optical band and not simply the bo
tom of the band. FrequenciesV such that 2<mV,vM ,
wherevM is the maximum of the optical band defined by E
~7!, cannot correspond to stable breathers. These uns
frequency bands are indicated by the full lines in Fig. 4~a!.
At low K1 the bands corresponding to different values oi
are separated, but, as the optical band broadens for hi
coupling, the various instability band overlap and the wh
frequency rangeV,vM/2 leads to instabilities due to reso
nance with the optical band.

While the instability bands shown in Fig. 4~a! define suf-
ficient conditions for a breather to be unstable, a freque
V outside of one of these bands does not guarantee stab
While the solution of Fig. 3~b! with V51.06, i.e., such that
2V.vM52.0976 for K5K850.1 has no superimpose
phonon as expected and does correspond to a stable solu
there are unstable solutions which are not determined by
forbidden frequencies shown in Fig. 4~a!. This is particularly
true at high coupling where the breathers are generally fo
to be less stable or at low frequency for smallK1 because
the amplitude of the breather becomes then very large.
ure 5 shows the maximum amplitudes (U2V) and energies
of the breathers versus their frequencies for a small coup
case K5K850.1. The stable breathers~marked by dia-
monds! are found in the higher frequency range~except for
the caseV51.04 discussed above which resonates with
optical band!, but no stable breathers were found f
V,0.805, although, according to the forbidden regions
fined above, one could expect stability fo
vM/350.6992,V,1. Figure 5 shows that amplitude an
energy rise sharply whenV decreases below 0.8. This rise
well described by an approximate solution obtained by
suming that only the central siten0 is moving while sites
n061 are at rest. Such a situation corresponds to an
tremely narrow breather and the motion is simply the mot
of a particle subjected to the combined action of the on-
Morse potential and the two harmonics springs of const
K connected to the fixed neighbors. The amplitude and
ergy of such a motion can be calculated exactly versus
quency, and, as shown in Fig. 5, this simplified picture giv
a rather accurate description of the exact breather solut
and, in particular, explains the sharp rise in energy and
plitude found at low frequency.
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Although the instability bands shown in Fig. 4 do n
provide a complete view of the regions of existence and
bility of breathers in a one-component model, they gi
however, a rather precise picture of the domain where
can expect breathers in a one-component model. Let us
examine to what extent the same ideas can be applied
two-component system.

2. KÞK8, two-component system

In a two-component system the acoustic degree of fr
domX is coupled to the optical variableY. This shows up in
the shape of the breather as illustrated in Fig. 6. Due to
different coupling constants along the two chains the am
tudes of theU and V displacements are different an
X5(U1V)/A2 no longer vanishes. As mentioned in Se
III A, this does not prevent the system from having exa
localized breathers which are now two-component breath
Figure 6 shows one example of such a solution, which

FIG. 4. Domains of instability for the breather frequency as
function of the coupling constantK1 ~a! for K250 and ~b! for
K250.9K1 . For each value ofK1 , the dashed line indicates th
optical phonon band, the dotted line indicates the acoustic band
the thick full lines correspond to the frequency domains, such
iV is within the optical band, fori integer (2< i<20).
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linearly stable and stable in a simulation in an ‘‘infinite
lattice. However, the domain of existence and stability of
two-component breathers is indeed affected by the prese
of the second component. From the results obtained fo
one-component breather, we can expect that resonances
the phonon bands may be a major cause of instability. Re
nances ofmV with the optical band are still possible an
result in a first set of forbidden frequency bands. ForK
ÞK8 the optical band becomes slightly broader, as shown
Fig. 4~b! drawn forK250.9K1 , i.e., a case where the tw
sublattices are very different (K850.053K). Consequently
resonances with the optical band forbid larger domains in
breather frequencies. But the most important new feature
possible resonance of the breather frequency with the ac
tic phonon band. Instead of a higher order coupli
(m52,3, . . . ) as for theresonance with the optical band,
can be a first order coupling becauseV is situated below the
optical band, i.e., in a possible frequency range for the aco
tic modes. Figure 4 shows that, for smallK2 the gap be-
tween the acoustic and optical modes disappears comple
aroundK151.0. Therefore we do not expect stable tw
component breathers forK1>1. However, for lower values

nd
at

FIG. 5. Amplitudes~a! and energies~b! of the breathers for
K5K850.1 The diamonds and stars correspond to exact solut
which are, respectively, stable or unstable. The full line joins
points corresponding to exact solutions. The dashed line co
sponds to the approximate results derived by assuming that
one particle is moving, its two neighbors being fixed at their eq
librium positions.



e
tic
uf
i

tic
o
th
r
us
b
ex

-
ly
e

ed

ro
a
or

n

e
tic
t
ed
ne
le
f p
e
ic

s.

g
ng
iates

.
ft.

he
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of K1 , two-component stable breathers can exist provid
that their frequencyV lies in the gap between the acous
and the optical modes. Moreover, such breathers are s
ciently stable to play the role of attractors for the solution
we start from a case whereV is in the acoustic band. As
described above for a case of a resonance with the op
band, a breather coupled to the acoustic band may lo
enough energy for his frequency to move up above
acoustic band and reach a domain where the breathe
stable. And even when there is no gap between the aco
and optical bands, i.e., when we do not expect any sta
breather, very long lived localized breathing modes may
ist. This is illustrated in Fig. 7 forK51.7, K850.9, and
V51.9. AlthoughK250.4 implies a strong coupling with
the acoustic modes asV is within the acoustic band, a simu
lation over more than 6000 breather periods shows on
small decay of the breather. There is indeed a constant
ergy loss through acoustic modes as shown in Figs. 7~a! and
7~c!, but the breather is, nevertheless, extremely long liv

Therefore, the numerical results forKÞK8 show that, al-
though the coupling between two degrees of freedom p
vides additional channels for energy loss away from a loc
ized mode, stable two-component breathers do exist. F
small coupling constantK1 their domain of stability is not
very different in a one-component or in a two-compone
system, as shown by Figs. 4~a! and 4~b!. For a largeK2 the
limiting factor for the stability is not the coupling with th
acoustic modes but nonlinear resonances with the op
bands as for the one-component model. It is also importan
notice for physical applications that the instabilities exhibit
by the numerical studies are weak, for both the o
component or the two-component breathers. An ‘‘unstab
breather can oscillate for hundreds or even thousands o
riods before decaying significantly, so that even breath
detected as unstable in this study can play a role in a phys
system.

FIG. 6. Breather shape forK50.40,K850.12, andV51.6. The
diamonds and crosses show the initial positions ofUn and Vn ,
respectively, and the dashed line showsXn .
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FIG. 7. Time evolution of a two-component breather in a system
without gap between the acoustic and optical phonon band
K51.7,K851.1,V51.9. ~a! X component at different times from
0 to 20 000 time units. The vertical scale extends from20.05 to
10.01. ~b! Y component. The vertical scale extends from20.4 to
10.4. The apparent oscillation of the amplitude is due to a beatin
between the breather period and the recording period. This beati
becomes slower as the time increases because the breather rad
acoustic waves which can be seen in~a!. This energy loss is asso-
ciated with a slow drift of the breather frequency to higher values
The beating provides a sensitive way to detect this frequency shi
~c! shows the breather energy~full line! and the total energy of the
chain vs time. The decay is due to the acoustic waves emitted by t
breather and absorbed by the damped boundary regions.
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4748 55KYLE FORINASH, THIERRY CRETEGNY, AND MICHEL PEYRARD
Up to now we have considered only exact initial con
tions obtained by starting from the anticontinuum limit. It
useful to examine also the validity of the approximate so
tions derived in Sec. III B, in particular, because Eqs.~26!
and~27a! can correspond to breathers which are moving w
respect to the lattice. Figure 8 shows one example of su
solution. The initial condition shows a fast evolution chara
terized by a decay of its amplitude and energy density
about 15% and an emission of small amplitude radiatio
Simultaneously the frequency increases fromV51.64 to
V51.83. Then the solution is fairly stable. However, t
velocity shows a slow decay and there is a weak energy
that persists. This is because moving breathers are not e
solutions of the discrete lattice. We have discussed, for
one-component case, the difference in energy between
centered and noncentered breathers. The same is true
two-component breather. Discreteness effects are respon
for the continuous energy loss that will eventually lead to
pinning of the breather at some site in the lattice. Howev
for the rather strong couplingK150.6, large amplitude

FIG. 8. Moving breather generated by the approximate solu
~26! with K50.7,K850.5, q150.1,Ve50.01. ~a! AmplitudesUn

vs time. ~b! Energy densityen vs time. The oscillations of the
amplitudes of the maxima are due to sampling effects; however
maximum energy density shows a slow decay.
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breathers can move long distances, as shown in Fig. 8. As
the one-component breathers@9#, the pinning of two-
component breathers increases with their amplitude. For
stance, withK50.15 andK850.05 a breather generated wit
the approximate initial condition withq150.1 and an ampli-
tudea050.3 is immediately pinned while a breather gene
ated with a050.05 moves at the prescribed veloci
Ve50.01.

Figure 9 compares the energy-frequency dependenc
the exact solution with that of the approximate solution~26!,
as it is initially and after the approximate initial conditio
has settled to a quasistable breather in a simulation.
though the initial breather parameters given by the appro
mate solution may be significantly different from the para
eters of the exact solution, particularly for the frequen
Fig. 9 shows that, in a broad range of parameters, the
proximate solution gives an initial condition that evolves t
ward an exact solution of the two-component model. O
the initial condition withV50.56 obtained witha050.6
which corresponds to a narrow large-amplitude breath
which is certainly not properly described by the approxim
tions leading to Eq.~26! failed to converge to a stabl
breather. This is another indication of the good stability
the two-component breathers since they can be gener
from a initial condition which is far from exact.

The broad breathers obtained from the NLS equation
mobile in the lattice because their width is much larger th
the lattice spacing and discreteness effects are average
on the spatial scale of the breather. There are other situat
in which discreteness effects can become weak, even
narrow breathers. As mentioned above for the o
component modelK5K8, a breather centered on a lattic
site does not always correspond to the stable solution, wh
may be associated with the noncentered, or multibrea

n

e

FIG. 9. Evolution of the approximate solutions of Eq.~26! when
they are used as initial conditions in simulations in a system w
K50.7,K850.5. The stars show the energy vs frequency for e
initial condition. The diamonds~connected to the correspondin
initial point by a dotted line! show the energy vs frequency for th
steady state solutions reached after 10 000 time units.~The initial
condition aroundv50.5 does not converge toward a localize
breather.! The crosses connected by the full line show the ex
breather solutions obtained numerically from the anticontinu
limit.
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55 4749LOCAL MODES AND LOCALIZATION IN A . . .
@16#, solution. Scanning through the breather frequencies
can check that there may be several values which corresp
to an exchange of stability between centered and non
tered breathers. This feature, first noticed for thef4 model
@14#, has been studied in detail for the one-component mo
@17,18#. When an exchange of stability occurs, these stud
show that even very narrow breathers can become very
bile in the lattice. The same exchange of stability betwe
centered and noncentered breathers is found for the
component model as for the one-component case.

IV. INTERACTIONS BETWEEN LOCAL MODES
AND LOCALIZATION OF THERMAL FLUCTUATIONS

As the preceding section shows that two-compon
breathers are sufficiently stable to play a role in a phys
system, it is important to study how they could be genera
in a real system. We examine here a mechanism which
been shown to lead to large amplitude breathers in o
component systems, the collision between breathers with
ferent amplitudes in a discrete lattice@4#, and then we inves-
tigate the spontaneous localization of thermal fluctuation

A. Collisions between breathers

The investigations have been carried out along the s
lines as in the study of the one-component system. We
interested in the energy exchange between the collid
breathers. The studies of the one-component model h
shown that the exchange is larger when the two collid
breathers have significantly different amplitudes. This is
derstandable because for two identical breathers, owin
the symmetry of the roles played by the two excitations,
energy exchange has to vanish. We consider here collis
between a large amplitude breather, henceforth called the
breather, which is initially fixed with respect to the lattic
and a mobile small-amplitude breather launched with an
tial velocity toward the big breather. The big breather is
exact solution so that its energy is well defined and can
measured accurately. The small breather is an approxim
solution given by Eqs.~26!. As breathers are excitations wit
an internal degree of freedom, the outcome of their inter
tion depends on their relative phases at collision time. C
sequently to analyze the mechanism that could lead to
formation of large breathers in a real system, we must s
all the relative phases of the two excitations. This is achie
by statistical sampling. We simulate 200 collisions with t
same big breather and various small breathers with in
positions and initial velocities chosen at random with
Gaussian distribution around selected mean values.
width of the distribution is chosen large enough to cover
relative phases during the interaction and scan a rather b
range of amplitude and velocities of the small breathers.

To examine the collision quantitatively, we define the e
ergy of the big breatherE1(t) as the sum of the energ
density on the 11 sites centered around its central
n1(t)

E1~ t !5 (
n1~ t !25

n1~ t !15

Hn~ t !, ~28!
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whereHn(t) is the energy density at siten extracted from
the Hamiltonian~2!. As the big breather is highly localized
the value of 11 sites is large enough to capture almost al
energy, and small enough to separate its energy from tha
the small breather, except during a small time inter
around the collision. We then define the transfer of ene
from the small breather to the big one,DE1(t), and the dis-
placement of the large breatherDn1(t) as

DE1~ t !5
E1~ t !2E1~0!

E2~0!
, Dn1~ t !5n1~ t !2n1~0!

~29!

whereE1(0) is the initial energy of the big breather an
E2(0) is the initial energy of the small breather. With th
definitionDE151 if the big breather absorbs all the ener
of the small one andDE150 if no energy has been trans
ferred. In order to also investigate how the energy transfe
split between the optical and acoustic motions, we comp
the quantities

DE1
x~ t !5

E1
x~ t !2E1

x~0!

E2~0!
, DE1

y~ t !5
E1
y~ t !2E1

y~0!

E2~0!
~30!

where the quantitiesE1
x , E1

y denote the optical and acoust
contributions to the energy of the big breather calcula
from the expression of the Hamiltonian as a function of t
X andY variables. Notice thatDE1

x(t) andDE1
y(t) are al-

ways normalized by the total energy of the small breath
The quantitiesDE1(t), DE1

x(t), DE1
y(t) show a fast variation

during the collision process and then stay almost const
although the big breather, perturbed by the collision, is
longer an exact solution and may radiate a small amoun
energy for some time after the collision. Therefore it mak
sense to speak of the values of these quantities ‘‘after’’
collision without specifying their full time dependence. Th
is generally not true forDn1(t) because, except for the mo
discrete case, the big breather is often set into motion by
collision. In this caseDn1 is simply calculated from the fina
positionn1(t) at the end of a simulation and its large valu
attests that the breather has gained a nonzero velocity in
collision.

Figure 10 compares typical results of two sets of 2
collisions for the symmetric caseK5K850.6 and the two-
component modelK50.7,K850.5. The big breather is the
exact solution with frequencyvb51.70, initially centered at
site 100 of a 200 cell lattice and the small breather calcula
with q150.1 has an average amplitude parametera050.15
~variance 0.05!, an average velocityVe1Vg150.2 ~variance
0.1!, and an average initial position 70~variance 10!. The
figure shows histograms of the probability distribution of t
energy transfersDE1, DE1

y , DE1
x and displacements of th

big breatherDn1. The results of the two-component mod
are very similar to the results obtained earlier on the o
component model@4#. They showthat the mechanism of en
ergy localization through breather collisions appears to
general and not restricted to a very simple one-compon
nonlinear lattice.Although Fig. 10 shows that the energ
transfer in favor of the big breather is slightly larger for th
symmetric caseK5K850.6 than for the two-componen
modelK50.7 K850.5, for both models, the distribution o
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FIG. 10. Energy exchange in sets of 200 breather collisions forK150.6. The dashed lines show the results forK5K850.6 and the full
lines show the results for the asymmetric caseK50.7,K850.5. ~a! Histogram of the total energy exchangeDE1 showing the probability of
a given value ofDE1 vsDE1. Each histogram is generated by dividing the full range ofDE1 observed in the 200 collisions into 40 intervals
and counting the collisions falling in each interval.~b! Histogram of the energy transfer to the optical motionDE1

y . ~c! Histogram of the
energy transfer to the acoustic motionDE1

x . For the symmetric caseK5K850.6 the acoustic motion is completely decoupled from the
optical one and thusDE1

x is always equal to 0.~d! Histogram of the displacement of the big breatherDn1. The large peak atDn15225
corresponds to the big breathers put into motion after the collisions, which have reached the limit of the investigated domain at the
the simulation.
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energy transfer is clearly biased toward positive values~only
very few cases in the 200 collisions result in an energy l
for the big breather!. Therefore random collisions between
small and a large breather tend to increase the energy o
larger breather. One should notice however that the co
sions do not result in a complete absorption of the sm
breather by the big one. AlthoughDE1 reached 0.8 in some
s

he
i-
ll

rare events, on average only 10% to 15% of the energy of
small breather is lost in favor of the big one and the sm
breather passes through the big one~or, in some rare cases i
reflected!. The results shown in Fig. 10 do not correspond
a particular case. In all cases that we have investigated w
we started from astablebig breather, we obtained simila
results. The energy transfer in favor of the big breathe
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55 4751LOCAL MODES AND LOCALIZATION IN A . . .
larger when the discreteness effects are larger, but it is
observed forK151.0 (K5K851.0 orK51.1,K850.9) or
for higher big breather frequencies such asvb51.8 for
K5K850.6 orK50.7,K850.5. The distribution of the en
ergy between the optical and acoustic motions shows
most of the transfer concerns the optical motion. Fig
10~c! shows thatDE1

x does not exceed 0.02, whileDE1
y

reaches 0.6 in several cases~isolated cases up to 0.8 hav
been observed!. If we start from anunstablebig breather,
which has a slow decay when it is left unperturbed such
the noncentered breather forK50.7,K850.3,vb51.5, the
average value ofDE1 is negative. This is not surprising an
it simply indicates that the collisions that perturb the unsta
breather accelerate its decay. This may also give a clue to
origin of the energy transfer in favor of big breathers beca
it suggests that it is the most stable excitation which tend
gain energy. We do not have exact analytical solutions
the discrete breathers. This precludes any analytical estim
of the energy transfer which would require an accurate
scription of the collision since it is a small effect. Howeve
the proof of existence of the discrete breathers@2,3#, which
indicates that there is a minimum value of the amplitu
below which exact localized solutions no longer exist, su
ports the idea that big breathers are more likely to exis
localized excitations and therefore more likely to gain ene
in collisions with small amplitude breathers which are on
approximate solutions.

Figure 10~d! shows that the displacement of the b
breather is often large and negative, i.e., in the direction
the incoming breather. The large peak atDn15225 arises
from the big breathers that were put in motion with a ne
tive velocity after the collision. The high mobility of the bi
breather is due to the rather high couplingK150.6 for this
set of simulations and it is enhanced after the collision
cause small amplitudes which are radiated in the nonela
collisions tend to induce a diffusion of the breather.

In the previous studies, a big breather is hit once b
small breather. The observed transfers of energy sugges
it is possible to raise progressively the energy of the
breather by multiple collisions. Figure 11 shows that this
indeed true, but the energy of the big breather is limited
the limit stability determined in Sec. III C. The initial colli
sions cause a large energy increase and the energy gai
cays to zero when we reach a high energy, correspondin
low frequency, for which the isolated breather was found
be unstable. This result is consistent with the energy de
described above for the collisions with an unstable
breather. Although breather collisions can lead to energy
calization in the nonlinear lattice, they cannot drive
breather into an energy-frequency range where it would
unstable, which puts an upper bound on the maximum
ergy of a localized excitation in the lattice. Multiple coll
sions cannot only boost the energy of a large stable brea
they can also prevent a weakly unstable breather from de
ing, as illustrated in Fig. 12.

B. Spontaneous localization of thermal fluctuations

Breather collisions provide a mechanism for energy loc
ization in a nonlinear lattice, but the studies described ab
to illustrate this mechanism consider a specially prepa
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initial condition. If energy localization is to be important in
physical system, it has to occur naturally from the ene
which can be brought to the system, i.e., from thermal
ergy. We know that this is possible in a one-compon
model@5#. The question that we want to address in this s
tion is: is it still true in a multicomponent model where e
ergy could be spread out by the acoustic modes? In orde
answer this question, we have simulated the dynamics of
lattice in contact with a thermal bath at constrained tempe
ture. This is achieved with an extended version of the No´-
Hoover method@19#, which completes the system by addin
a small number of extra degrees of freedom, called ‘‘therm
stats’’ which are coupled in a nonlocal way to all the phy
cal degrees of freedom of the lattice. It can be shown tha
microcanonical simulation of the extended system result
canonical equilibrium properties of the physical system
interest. We use a chain of three thermostats which prov
good ergodic properties and we have checked that the
and second moments of the kinetic energy of the nonlin
lattice have their values expected in the canonical ensem

The numerical simulations confirm the results of the p
vious sections which indicate that the multicomponent mo

FIG. 11. Time evolution of the energy of a big breather und
going multiple collisions with small breathers. The energy is m
sured in an 11 cell window around the center of the big breath
Each peak corresponds to a collision, when the small breathe
inside the measurement window.~a! K5K850.6,vb51.7 and~b!
K50.7,K850.5,vb51.7. Note that the time scale is not the sam
in the two figures. In case~b! we show a larger number of colli
sions. When the breather is driven up to an energy for which i
not stable it can show a sharp decrease and then grow again u
the effect of subsequent collisions.



lin
r
13
ib
il
o-
n
re
wo

r
ion
he
e

tic
hi
nt

e
o
r
th
n
cy

ge

i
o
a
c

er
a
u
Fo

es
rm

ion
lat-
of
ing.

re-

ime
ct
k
os-

re
us

ig
rs

er
ed
th
tat

e
s
128
he
the
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exhibits most of the properties of the one-component non
ear lattice. Spontaneous localization of energy does occu
the multicomponent nonlinear lattice as illustrated in Fig.
which compares the case of the nonlinear lattice, descr
above to a harmonic lattice obtained by replacing in Ham
tonian ~2! the on-site Morse potential by the harmonic p
tential (Un2VN)

2 which yields the same linear dispersio
curves. Figure 13 has been obtained for a moderately disc
caseK150.2, and a large asymmetry between the t
chainsK50.3,K850.1, i.e.,K250.1 in order to illustrate a
case where the two types of displacementsX and Y are
strongly coupled. For other values of the parameters, the
sults are qualitatively similar but the tendency to localizat
decreases whenK1 increases, as one might expect from t
previous sections, which have shown that the domain of
istence of local modes is larger for a weak coupling.

Figure 13 shows that the harmonic and anharmonic lat
have very similar behavior for the acoustic motions. T
was expected because, even for the Morse on-site pote
the equation of motion forXn @Eq. ~6a! # is linear. The only
nonlinearity comes indirectly from the coupling with th
Yn displacements. It appears on a plot of the space-time F
rier transformSx(q,v)5F„uXn(t)u2…, which shows a broade
dispersion curve for the anharmonic lattice than for
purely harmonic lattice. TheX displacements appearing i
Figs. 13~a! and 13~c! are dominated by the lowest frequen
mode with wavelengthl52N in units of lattice cells be-
cause, for a given energy, it is the mode which has the lar
amplitude. The calculation ofSx(q,v) which shows a well
defined maximum around the acoustic dispersion curve,
dicates that an interpretation in terms of the linear phon
modes is meaningful for both the harmonic and the anh
monic lattices and that all modes are excited, as one
expect from a thermalized system.

On the contrary the optical motions are extremely diff
ent for the harmonic and anharmonic lattices. For the h
monic lattice, the results can be interpreted in terms of eq
partition of energy among nonlocalized phonon modes.

FIG. 12. Time evolution of the energy of a weakly unstable b
breather undergoing multiple collisions with small breathe
K50.7,K850.5. The big breather has frequencyvb51.4 and the
small breathers have an amplitude parametera050.15 and a veloc-
ity 0.15. The full line shows the energy of the big breather und
going multiple collisions with incoming small breathers. The dott
line shows the time evolution of the energy of the same big brea
without the collisions. It slowly decays until it reaches a stable s
with a lower energy.
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the rather weak coupling that we consider hereK150.2, the
dispersion of the optical branch is small so that all mod
have a similar amplitude. This results in the almost unifo
gray tone of Fig. 13~b! that shows theYn(t) displacements in
the harmonic lattice. The calculation ofSy(q,v)
5F„uYn(t)u2… in this case reveals the expected dispers
curve of the optical phonon modes. For the anharmonic
tice, Fig. 13~d! shows that, on the contrary the notion
nonlocalized phonon modes completely loses its mean
Moving along any horizontal line in Fig. 13~d!, i.e., moving
along the lattice for a given instant of time, one crosses
gions with very largeYn ~up to Yn'15.0) next to regions
whereYn is small (20.5,Yn,0.5). And it is remarkable
that this pattern is almost conserved if one considers a t
translation by moving the observed line up or down. In fa
one can notice in Fig. 13~d! almost vertical lines where blac
and white spots alternate. They correspond to cells that
cillate betweenY,20.5 and Y.5.0 while nearby cells
show only a very small amplitude motion. These lines a
simply the local modes that we analyzed in the previo

.

-

er
e

FIG. 13. Comparison of the properties of a linear~harmonic
on-site potential! and nonlinear~Morse on-site potential! thermali-
zed lattice. The coupling constants areK50.3, K850.1 for both
lattices. The temperature isT50.8 in energy units. The gray scal
figures show theX andY displacements of the different lattice site
vs time. The horizontal axis extends along the lattice which has
cells with periodic boundary conditions. The vertical axis is t
time axis. It extends over 1000 time units, i.e., 500 periods of
lowest optical mode.~a! Harmonic on-site potential:Xn ~acoustic
displacements!. Gray scale fromX,210 ~white! to X.110
~black!; ~b! harmonic on-site potential:Yn ~optical displacements!.
Gray scale fromY,21 ~white! to Y.11 ~black!; ~c! Morse on-
site potential: Xn ~acoustic displacements!. Gray scale from
X,210 ~white! to X.110 ~black!; ~d! Morse on-site potential:
Yn ~optical displacements!. Gray scale fromY,20.5 ~white! to
Y.15 ~black!.
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55 4753LOCAL MODES AND LOCALIZATION IN A . . .
sections. They have been formed thermally and, at the h
temperatureT50.8 ~in energy units, to be compared to th
dissociation energy equal to 1 for the Morse potential! that
we have investigated to generate Fig. 13 some modes ha
very high amplitude and low frequency. These local mod
give rise to a very large central peak inSy(q,v) while the
optical phonon branch is no longer visible. It is important
notice that, if one considers the behavior of the nonlin
lattice on a time scale of the order ofDt5200 @one-fifth of
the time interval shown in Fig. 13~d!# there is no equiparti-
tion of energyamong the various lattice sites. The sites w
a large amplitude breather mode have a significantly hig
energy density than others. While the largest breathers
in Fig. 13~d! do not have a long lifetime, which is consiste
with the fact that they have been found to be unstable in S
III, smaller breathers created thermally can persist for at le
50 to 100 oscillation periods. Equipartition of energy is on
recovered if one averages over a much longer time s
~typically 500 to 1000 periods of the oscillations in the bo
tom of the Morse potential!.

The simulation shown in Fig. 13 shows that thermal flu
tuations can self-localize to form the breather modes inv
tigated in the preceding section. This simulation has b
performed for the high temperatureT50.8, but the formation
of breathers is observed at much lower temperatures suc
T50.3, as shown in Fig. 14. However, at such low tempe
tures, the calculation ofSy(q,v) shows a broad optical ban
in addition to the central peak, which indicates that exten
modes coexist with the localized breathers although their
quency is below the frequency given by the linear dispers
curve.

FIG. 14. Optical displacementsYn shown with a gray scale as i
Fig. 13 in the anharmonic lattice forT50.3. The lattice parameter
are the same as for Fig. 13. Gray scale fromY,0 ~white! to
Y.11.5 ~black!
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V. ROLE OF BENDING ON DNA OPENING

The mechanism by which RNA polymerase opens loca
the DNA double helix to initiate the transcription is no
known, but there is experimental evidence that it involve
bending of the double helix@6,7#. Although it cannot claim
to describe accurately the actual effect of the bending o
three-dimensional helix, the two-component model can br
insight into this mechanism. Using a simple mechani
model of the double helix, it is easy to observe the effects
a local bend:~i! Bases inside the bend are brought closer
each other while the ones which are outside increase t
relative distance. This must modify the stacking interacti
increasing the coupling constant on the strand inside
bend while simultaneously decreasing the coupling cons
along the outward strand.~ii ! A local unwinding of the helix
occurs in the middle of the bent region while the two regio
next to the bend on both sides are on the contrary slig
more twisted. This is due to the rigidity of the two stran
entangled in the double helix.

Molecular dynamics studies@20# show that DNA bending
is accompanied by a significant reduction of the open
energy of the base pairs, which can be considered as
consequence at the microscopic level of the mechanica
fects mentioned above. Contrary to the one-compon
model, the two-component model has enough freedom
describe both of these mechanical effects. The local varia
of the stacking, which leads to different coupling consta
on the two strands, simply corresponds to local change
K andK8. The local bending corresponds to a local deviati
of the acoustic degree of freedomXn from its equilibrium
zero value. This is not an equilibrium state of the free m
ecule, which would be straight, but it can be obtained
imposing on theXn local constraints that correspond to th
action of the bending protein. In the actual bending of DN
both mechanical effects occur simultaneously. However,
a better understanding of their influence on the localiz
modes, we have considered them separately.

In order to investigate the effect of a local variation of t
stacking interaction, we have simulated cases whereK5K8
almost everywhere, except in a central region of the ch
extending over 20 cells, whereKÞK8. The influence of such
an extended defect on moving breathers depends heavil
the choice of parameters. It may cause breather reflec
temporary trapping, or on the contrary a speed-up when
breather passes through the perturbed region. Conseque
although one can find some parameter range in which
defect causes breather trapping and therefore promotes D
opening, the rather weak effect of stacking alteration and
sensitivity to parameters suggest that it is not the main m
of action of RNA polymerase.

Numerical simulations of the direct effect of bending i
dicate that the geometrical deformation induced by the
zyme can play a more systematic role to favor opening t
the change that it induces on the coupling constants. St
tural studies of the DNA protein complex show that, in ord
to bend DNA, RNA polymerase makes contact with the he
in two regions@21,22#. This can be simulated by imposin
constraints on theXn in two regions around the center of th
bend. We assumed a linear variation of theXn in these con-
strained regions through the conditions
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4754 55KYLE FORINASH, THIERRY CRETEGNY, AND MICHEL PEYRARD
X~nc2nb1 i !5 ia, X~nc1nb2 i !5 ia

for 0< i<nW ,

(31)

wherenc is the index of the central site of the bend,nb gives
the distance, in cells, from the center of the last bases c
strained by the protein, andnW is the width of the two con-
tact regions@to improve the readability of the indices w
have used the notationX(n) instead ofXn#. The equilibrium
configuration is obtained by minimizing the energy of t
lattice with all other degrees of freedom allowed to evolv
Figure 15 shows an example of the shape of a relaxed la
with K50.2, K850.8, nb510, andnW59. The bend im-
posed on the acoustic coordinateX induces a local variation
of the base pair stretchingY which is positive in the centra
part ~corresponding to local unwinding! and negative on the
two sides of the bend~corresponding to base in a pa
squeezed together!. This is consistent with the shape e
pected from the mechanical properties of a three-dimensi
helix. One can notice that, ifK andK8 are exchanged, i.e., i
we bend the lattice with the strongest strand inside the be
in the planar two-chain model, the bend tends on the cont
to close the base pairs in the center.

The small value ofY in the vicinity of the bend shows
that, in the two-chain model, the coupling between bend
and opening, which is only due to the asymmetryKÞK8 is
weak compared to the coupling imposed by the thr
dimensional structure of DNA. It has, nevertheless, a sign
cant effect on the localized modes. We have studied it
merically with a method very similar to the one used to stu
breather collisions in Sec. IV. The big breather is simp
replaced by the bend and small breathers with a Gaus
distribution of amplitude, and velocities are sent toward
bent region. The simulations are performed in terms of
variablesXn andYn , which allows us to maintain the ben
by constraining the appropriateXn coordinates as describe
above. The energy in the regionnc22nb<n<nc12nb is
monitored versus time, as well as the energy density in
lattice.

As one might expect, the results depend on the charac
istics of the bend, i.e., its spatial extension~determined by
nb and nW) and its amplitude~determined bya). Broad
bends are almost transparent to localized modes. On the
trary, sharp bends restricted tonW53 or 4 cells can reflec
most of the incoming local modes because their width
comparable to the width of the localized modes in a rat
discrete lattice (K1<0.5). This may have some cons
quences on the biological function because proteins o
bend DNA sharply (90° bends resulting almost entirely
two 40° kinks extending only on a few base pairs have b
observed@7#!. Studies of the two-chain model suggest th
such bends could be very efficient in preventing the tra
mission of localized excitations, and even linear phon
modes, across the bend region. Two such bends would
most isolate one region of the molecule from the remain
parts regarding the transmission of thermal fluctuations, a
for instance, energy delivered between the two bends b
chemical reaction would hardly flow away. Figure 16 sho
the effect of a moderate bend (nb510,nW59, a50.12, cor-
responding to the relaxed structure shown in Fig. 15!. The
n-
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FIG. 15. Relaxed structure of the two-chain lattice in the pr
ence of a bending constraint onXn with nb510, nW59, a50.12.
The coupling constants areK50.2,K850.8. ~a! Un andVn coor-
dinates of the particles,~b! Xn . The constrained sites correspond
the two inclined linear parts of the curve,~c! Yn . The base-pair
stretching induced by the bend is small and does not appear cle
in ~a!.
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55 4755LOCAL MODES AND LOCALIZATION IN A . . .
moving localized modes sent toward the bend had an am
tude a050.15 ~with a standard deviations50.02) and a
velocity 0.1 (s50.01). Figure 16~a!, displaying the time
evolution of the energy in the bent region, shows that
bend can act as anenergy collector. While a few localized
modes pass through or are almost totally reflected, as sh
in Fig. 16~b!, many of them are captured at the bend or
least abandon a large part of their energy in the bent reg
in the bent region. As a result the fluctuational opening of
base pairs increases drastically in the bent region. If the s
mechanism could operate in the three-dimensional struc
of DNA, it could explain how the RNA polymerase cou
create a transcription bubble without bringing in ener
through chemical reactions.

FIG. 16. Effect of a bend on incoming moving localized ex
tations in the two-chain model. The parameters of the model and
constraints imposed to create the bend are the same as for Fig
~a! Energy density in a window of size 2nb centered on the bend v
time ~in dimensionless time units!. Each spike corresponds to a
incoming moving breather.~b! Contour plot of the energy density i
the two-component chain vs time. The bend is centered on the
n50 and the breathers are launched every 4000 time units from
2100 with a positive velocity. They appear on the figure as lines
oval shaped patterns which are generated by the sampling o
breather energy density every 100 time units.
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VI. CONCLUSION

The model considered in this work was initially motivate
by the study of DNA denaturation, but the most importa
results are probably the general conclusions that can
drawn for nonlinear energy localization in lattices. Studies
one-component lattices had previously shown that intrin
local modes, due to nonlinearity, could exist in homogene
lattices and that these modes could be spontaneously for
through localization of thermal fluctuations, one mechani
of their growth being energy exchanges in collisions th
tend to favor the largest excitation. Consequently lo
modes could appear as involved in several physical phen
ena, such as DNA denaturation, because they were likel
form in a nonlinear lattice as soon as the temperature was
too low.

However, in spite of these remarkable properties the
evance of local modes in a real system could be questio
because the vast majority of physical systems require a m
ticomponent description. Extra degrees of freedom prov
additional channels for energy transfer so that it was
clear whether local modes could persist long enough i
realistic system to play a significant role. Using a two-cha
model, we have shown that they do exist as exact soluti
and that they have a broad range of stability. Moreover,
have shown that, even when we chose on purpose a
where a local mode should decay because its frequency r
nates with a mode corresponding to another degree of f
dom ~a phonon mode of the acoustic branch!, the decay is
very slow. The lifetime of local modes is thus large enou
to allow them to play a role in a physical process. Perha
more importantly for the physics, we have shown that
mechanism of growth of the local modes through ene
exchange in collisions is still active, and that the spontane
formation of local modes in a thermalized system takes pl
in the two-component model as it does in the one-compon
case. Of course, physical systems are often complex a
two-component order parameter may not be enough to
scribe them. Let us emphasize, however, that moving fr
one component to two components is aqualitative jumpbe-
cause we start providing external channels for the deca
local modes. Adding more than two components in a o
dimensional model may increase the decay rate of locali
modes, but does not bring a qualitative change. It may h
pen that more components close completely the gap
separates the optical branch carrying the local modes f
the other branches associated with the other degrees of
dom. But we have verified that, even when localized mo
resonate with extended linear modes their lifetime may
very large.

One should, however, notice that the present results
restricted to a one-dimensional model. Investigations of m
tidimensional lattices@1# have already shown that they ca
sustain local modes. The question of their spontaneous
mation is still open, and currently under study. We ha
considered here nonlinear lattices with an on-site poten
Local modes exist also in the presence of nonlinear coupl
without substrate potential, but their properties in multico
ponent systems or in the presence of thermal fluctuati
have yet to be studied.

Regarding the application to DNA, our results have to
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4756 55KYLE FORINASH, THIERRY CRETEGNY, AND MICHEL PEYRARD
taken with caution because the two-chain model lacks a
damental ingredient, the helicoidal structure of DNA. It
however, important to notice that the local modes that
proposed earlier as possible candidates to describe the
tuational openings observed experimentally still exist if
consider a more realistic DNA model than the on
component model examined earlier. It is also interesting
remark that, in spite of its simplicity, the two-chain mod
exhibits a coupling between bending and opening wh
seems to be an important feature in several biological fu
tions. Although the extent of the coupling between these
degrees of freedom is much smaller in the two-chain mo
than in a three-dimensional helicoidal structure, it genera
qualitatively the expected opening effect, and our res
show that it can provide an energy collection mechanism
the transcription-enzyme activity, or that sharp bend
y
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could act as an ‘‘insulator’’ for the transmission of inform
tion by large amplitude fluctuations along the DNA mo
ecule. These two aspects will deserve further investigati
concerning their biological implications.
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