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The existence, stability, and the conditions for the formation of nonlinear localized modes are investigated

in a two-component one-dimensional lattice. In spite of their possible coupling with acoustic phonons, discrete
breathers can exist as exact stable solutions or show a very slow decay. Nonlinear energy localization through
energy exchange between localized excitations, exhibited previously for a one-componeniTaflaexois
and M. Peyrard, Phys. Rev. Le@t0, 3935(1993] is more general and also valid in a multicomponent lattice.
A self-localization of thermal fluctuations is also observed in such a system. The model is used to investigate
the effect of bending proteins on DNA. It shows that a bend can collect the energy of moving localized modes
or insulate one part of the molecule from transfers of energy from large amplitude excitations in other parts.
[S1063-651%97)05504-9

PACS numbg(s): 03.40.Kf, 63.20.Pw, 87.18-e

[. INTRODUCTION tween local modes as a mechanism for energy localization
(Sec. IV), and(iii) the role of bending on DNA local opening
Numerous studies have been devoted to localized moddSec. V.
in nonlinear lattices because they provide examples of local-
ized excitations irhomogeneoukattices, i.e., in the absence
of any disorder. Approximate solutions have been obtained The Hamiltonian of the system is
for one-dimensional or multidimensional latticEs] and a
f of existence of time-periodic, spatially localized, solu- 1 (dun)2 (dvn
proo periodic, spatially , = om [ Son] | SO
tions, or breathers, has been given for a broad range of n 2 dt’ dt’
Hamiltonian coupled oscillators latticd®,3]. Moreover, a

Il. MODEL

2

+ Ek(unJrl_un)2

spontaneou$ocalization of energy in such lattices has been 1 , 2 _ _ _ 12

found and it has been shown that it can occur through energy K Wnramo)™ Diexd —aup—vn)] = 13

exchange between interacting moving breatliéts 1)
However, these studies have considered lattices onth

degree of freedom per sitghile most of the physical sys- The two degrees of freedom per cell, andv,,, describe

tems are multicomponent systems. Extending the results tothe transverse displacements of the two bases belonging to
multicomponent lattice is not necessarily trivial because inthe base pair labeled by indexin the DNA molecule[5].
teractions among the various degrees of freedom could dérhe coupling of two nucleotides along the same strand is
stroy the local modes since they provide additional pathwayassumed to be harmonic, with coupling constdnendk’.
for energy flow in the lattice. Our aim here is to consider aPaired bases in DNA are always different from each other. In
simple example of a multicomponent system and investigata homopolymer formed, for instance, only of adenine-
to what extent the properties of simpler nonlinear latticeghymine (A-T) pairs, the interactions along the two strands
remain valid. The model that we have considered is a twoinvolve the stacking of bases with a single cycle on one
chain model for describing the dynamics of DNA and its strand, while on the other strand two-cycle bases are stacked.
thermal denaturatiofb]. It has been chosen because it pro-In natural DNA with a complicated base sequence, the dif-
vides a simple two-component model to examine the quesferences between the two strands tend to be averaged out,
tions listed above, and because it may be relevant to studyut, on a segment of the molecule with a size of the order of
some important biological properties of DNA, such as thethe size of a transcription bubble, i.e., 20 base pairs, the
relation between bending and local opening, which may belifference between the strands is still very large. To appre-
significant for the initiation of the transcription since the ciate this, one may notice that the stacking energies of the
RNA polymerase bends DNA locally while it creates the different base pairs in DNA vary at a ratio of 1 to 6, depend-
transcription bubbld6,7], or the possible exchange of en- ing on the stacked bas¢8]. Moreover, if the molecule is
ergy between acoustic and optical modes in the moleculeent, this brings the bases inside the bend closer to each
which could be stimulated, for instance, by ultrasonic exci-other, and increases their interaction significantly, which is
tations. another cause for the absence of symmetry between the two
The questions that we have particularly examined are thetrands. Thereforék and k’ can be very different. As we
following: (i) the existence and stability of local modes in a shall see below, this has important consequences. The inter-
two-chain nonlinear lattic€Sec. IlI), (ii) the interactions be- action between the two bases in a pair is modeled by a Morse
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potential, which represents the hydrogen bonds coupling the 307 . e ‘ —
bases, as well as the repulsive interaction between the phos- 1 <a> ]
phate groups. o5l ]
Introducing dimensionless displacements=au, and ]
V,=av,, and a dimensionless tinte=t’ \/m/Da?, we get a N
dimensionless HamiltoniaH=H'/D under the form
G 15 1
H—El dU”2+ OIV”2+1|<U U,)2
420l dt dt 2 KUnr1=Un) 10k 1
1 ’ 2 2 o5F 0 e 3
+§K (Vn+1_Vn) +{eXF[—(Un—Vn)]—1} , (2) T
OO 1 1 ( 1 P R |
where the dimensionless coupling constants Kirek/Da?, 00 05 1.0 15 20 25 3.0
K’'=k'/Da?. q
The equations of motion deriving from Hamiltonig)
are 30 T T T T T T
, (b) o
d<u, 2.5 === 7
S~ KUnpa+Up1—2Uy) i ==
2.0Ff .
+Ze*(unfvn)(e7(unfvn)_ 1), (33)
G 1.5 i
dzvn ’ g - _:
di2 =K' (Vpy1+Va_1—2V,) 10k //// b
_ze*(unfvn)(e*(unfvn)_l)_ (3b) 05k g b
It is interesting to consider the new variables 00 . l . l . .
. . . . .0 25 3.
y _Un+Vn _Un_vn “ 0.0 05 1.0 12 2.0
n \/E 1 n \/E )

FIG. 1. Dispersion curves of the two-chain moddh)
where X,, describes the acoustic motions of the two-chaink, =0.1, K_=0 (full lines) and K_=0.08 (dashed lines (b)

system, whileY, corresponds to the stretching of the bondK, =0.6,K_=0 (full lines) andK _=0.4 (dashed lines
connecting the two strings. If we introduce the coupling con-
stants

+2{1+4K?%sirf(g/2), (7)

w2=2(1+2K+sin29
KK K=K’ 2

Ki=——— K.=—5—, 5

where the+ sign corresponds to the optical brang@hbhich
involves only the stretchingy if K_=0) and the— sign
corresponds to the acoustic brar(@rhich involves onlyX if
d?X,, K_=0). Figure 1 shows these dispersion relations in two
2 K KnegF Xn-g— 2Xp) typical cases, a weak coupling case =0.1 and a stronger
coupling K, =0.6. The coupling between the two motions
=K_(Yps1+Yn_1—2Y,), (6a)  for K_#0 shows up in the modification of the dispersion
relation. WherK _ increases, the optical band reaches higher
d2y, 4 _ _ values for largeq while the maximum acoustic frequency
gz Ke(YneatYn1=2Yn)— EG_VZY”(E_VZY”— 1) decreases, increasing the gap between the acoustic and opti-
cal bands which exists as long as the coupling is not too
=K_(Xps 1+ Xn1—2X,). (6b) large. However, as shown in Fig. 1, the change is only sig-
nificant at large coupling.

the equations of motion become

Equations(6) show that, for the symmetric case=K’,
i.e., K_=0, theX andY motions are decoupled. The acous- |Il. EXISTENCE AND STABILITY OF LOCAL MODES
tic motions are then simply linear and nonlinearity shows up
only in the stretching mod¥. In this case, a separate study
of the stretching motion is possible. We are interested here in For Hamiltonian lattices of coupled nonlinear oscillators
the more general cad€#K’', so that theX andY motions  with a one-component degree of freedom, a rigorous proof of
are not independent of each other. the existence of nonlinear localized modes has been obtained

The dispersion relations of the small amplitude waves 0f2,3]. Such modes exist, provided that the coupling is below
frequencyw and wave vectoq are given by a threshold which depends on their amplitude. This proof is

A. Existence and exact solutions
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also valid for the two-chain model K _=0, because then a numerical method to actually derive an exact solufid].
the Y degree of freedom, which carries the nonlinearity, isLet us denote, by the generic notatign, the degrees of
totally decoupled fronX and can be studied separately. In freedom corresponding to the positioXs and Y; and by
this case Eq(6b) reduces to p; the conjugate variables. A breather of peridis a fixed
. point of the operatoZ which associates the configuration at

Fa(Y, K=Y+ Ko (Yo +Yq-1=2Y) +V'(Y,)=0, (8)  time T, to a given initial configurationd,p)=({q;}{pi}).
Moreover, as the equations of motion are invariant under
time reversal, we can restrict the search to initial configura-
tions where all the sites are initially at rest; €0 Vi), i.e.,

The idea of the proof is to consider tlaaticontinuum . .
limit K, —0, where the coupling vanishes. In this limit, the we star'g from a maximum Of. th? breather amplitude. Rar
y ' | ' sites, T is therefore, an application from?N (for the two-

existence of localized solutions is trivial because the oscilla: omponent modglto BN, Finding an exact solution of pe-

tors are uncoupled. The localized modes that we are lookin od PI’ amounts theréfo.re o fir%ldin 2 7610 of the o :rator
for here arebreathers i.e., oscillatory modes characterized b ' ' 9 P
by a given frequency). Therefore, among all the possible O(q) = 0)—(qa.0 9
solutions in the anticontinuum limit, only the solutions that (@=7(9,0)~(a,0. ©

satisfy the following conditions are considerdd:for alln  The pymerical method solves this equation by expanding
Yn_(t) is perlod|c in _t|meYn(t)=Yn(t+27r/Q); (i) _the SO-  O(q) around an approximate solutiap as
lution is time reversibley,,(t) =Y,(—t) . Such solutions can
be characterized by a set of_numbers defining a ({@ﬁ@ 0(q)=0(q) + AX(q—qp), (10
such thato,=0 when an oscillator is at res#;,=m if the
frequency of thenth oscillator ism€) (m intege) and its  where A is a 4NX 2N matrix, and minimizing the norm of
phase at=0 is 0, ando,= —m if the frequency ianQ) and  O(q) with respect tay. Using energy conservation one could
the initial phase isr. In particular, the anticontinuum limit restrict the calculation to the firstNecomponentsy; since, if
solution which corresponds to a breather centered on the sitee initial positions are exactly reproduced at tifig, the
Ng is simply defined byrnozl ando,=0 if n#n,. momenta have to vanish to conserve energy. The anticon-
It is remarkable that the trivial solution 6Y,0)=0for  tinuum limit provides the necessary approximate solution
decoupled oscillators has a unique continuatiy{t,K,)  do because, in the limit of vanishing coupling, the breather
for finite couplingK ., as long as the coupling is below a reduces to the motion of a particle in the Morse potential
given thresholdK , <K_; conditions for this continuation Which can be solved exactly. The numerical method starts
are(i) dw(1)/9l #0 for the frequenciei) that appear in the from the exact solution withK . =K_=0 and increases the
code{o,} of the configuration, wheré is the action of a coupling in small steps. For each step, E4).is solved with
single oscillator represented in action-angle variabl@$, @ starting approximate solutian, which is the exact solu-
mQ # V' (0) for all m appearing in the code of the configu- tions obtained at the previous step. Although the principle of
ration. The first condition implies that the oscillators must beth€ calculation is simple, there are several technical problems
nonlinear, as their frequency depends on their action. Thisvhich are discussed ifi1,1@. For instance, when the sys-
condition is easy to understand intuitively because we cont€m has solutions at frequency(Such as the acoustic trans-
sider a lattice made of identical oscillators. If they were lin-ational mode of the two-component chaar multiple of the
ear, any excitation of one of them would be in exact resoPreather frequencyy,=2#/T,, the reduced BX2N ma-
nance with the neighbors and any weak coupling wouldrX /A is not invertible, although Eq9) has an exact solu-
allow the energy of an excited site to be transferred to itd!0N.
neighbors. The second condition, which could be relaxed if When the exact solution has been found, its linear stabil-
one looks at nonlocalized solutions, such thgt#0 for all ity can be investigated by the Floquet method, i.e., by look-
n, is also a nonresonance condition. The breather frequendfd for the time evolution over one period of a small pertur-
Q and its harmonics that enter in the solution must not resobation (59(0),5p(0)). A linearization leads to the value of
nate with the linear frequency of the oscillators. Among allthe perturbation at tim&, as

the solutions defined by their code,}, the breather solu- _
tion o, =1 and o, =0 if n#ng is characterized by an ex- (69(Ty), 8p(Th))=Fx(54(0),5p(0)), (12)

ponential decay of the amplitude as a functiorf n|. where F is the Floquet matrix. The solution is stable if the
ForK_#0, theX andY degrees of freedom are coupled. pertyrhation decays in time; i.e., the modulus of all the ei-
However,the proof of existence of localized oscillatory so- genvalues ofF is lower or equal to Athe eigenvalue 1 is

lutions can be extended this multicomponent systefd0l.  zays present and simply corresponds to a time translation
The method amounts to eliminating the acoustic variablegt ihe preather solution

which is coupled to the optical one, through the dynamical
equations of motions. For a one-dimensional lattice this is
always possible and the theorem established for a one-
component model can be extended to the two-chain model Since we have an exact solution, one may wonder
that we consider here, so that the existence of localizewhether it is useful to look for an approximate solution.
breather modes at low coupling can also be established. However, the exact solution can only be obtained numeri-
Moreover, the introduction of the anticontinuum limit cally, and, moreover, only nonmoving modes can be ob-
goes beyond a proof of existence because it can also provideined. The lattice breaks the continuous translation exzd

whereV(Y)=D[exp(-2Y)—1]? is the on-site potential.

B. Approximate solution
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act moving solutions do not exist. However, when the 1 ) 1 )

coupling is sufficient or when the amplitude of the local ¢1:a( —2|A|%+ §A292'01+ §A* e 20

mode is small, approximate moving solutions can exist. Al-

though we expect these solutions to be trapped by discrete- qgc'g , ,

ness effect§9], they can be relevant in a physical system, in i (Be%2+B*e™'%2), (209
particular as transient states leading to energy localization 0

(See Sec. IY. They can be obtained analytically in the con- 2012

tinuum limit with a multiple scale expansion if the coupling l:ql O(Aei 014 A* e 101) (20b)

constantk _ is sufficiently small. The nonlinear term of Eq. wS

(6b) is expanded as

Finally, at ordere?, the cancellations of the secular terms
give equations foA andB.

4 ‘ Ny
Eei 2Yn(e™ Pn—1)=4(Y,+a Y3+ BY?), For A we obtain

2
with a=-3\2, p=3. (12 2P QlAA-RA=O, (21)
) 231
If we look for solutions of ordek, X= ey andY = e¢, with
K, =cZ being of order 1 whilek _=ec’3 is assumed to be Wwith
of order e, Egs.(6a) in the continuum limit become

2 2 2 4,14
2 2 2 p= , = —a?-38|, R= _
2y lzﬁ_cé_(? 1/2/=€C'S—0 (2 (13 201 20| 3 A 20,05
at ox X (22)
P 32 Y Equation(21) is written in the frame moving at spead;,
2 2 _ 12 .
2 ~Cogyz twole+ cad?+ e’ Bg’)=ec 02 i.e., £,=X;— Vg1 Tq, ,=T,. It can be brought to the stan-

(14)  dard nonlinear Schdinger (NLS) form by defining
A=A"exp(-iRm) to get
where we have introduced the constait=4 for convenient

tracking of the various contributions in the following formu- oA A’ 2ar
las. Looking for a solution of the form '(9_7-2+P 9&2 TQIATA=0. 23

b=dotepit€dy Y=ot et e’Pn, (19 For the parametersy, «, B considered here, the product
PQ is positive and the equation has the standard soliton

where the functiong; and ¢; depend on the multiple scale solution of amplitudeA, and envelope velocity,

variables To=t, T;=et, T,=€’t and X,=X, X;=eX,
X,=€%x, at ordere® we get

Veés
. ) A’ =Agsech(Q/2P)A —UeT exp(l )
bo=A(Xy, Ty, Xy, Tp)el@X0-1To 4 ¢ c=Ae 1+ c.c., (16) 0SeChVIQIZP) Aol £17ve2)] 2P

2 2
ve Q
(dpXo— wsTo) i6 Xex;{—i(—e— AO>72 (24)
Po=B(Xq,T1,X,,Ty)e' %% @210+ c.c=Be€'“2+c.c., (17) 4P 2
where the phase factoss and 6,, which depend on the fast For B we obtain thdinear equation
variablesX,, Ty, can be chosen independently, provided that
w41 and w, obey the continuous dispersion relations 9B q‘z‘c’g
I(}’T+ mBZO (25)
wi=wi+ciq?  wi=ciq. (18) 2 2o

. . . This equation has plane wave solutions. Therefore, if we
This freedom in the selection of the phase factors come .

. . ook for localized modes, we must choBe=0.
from the assumption tha€ _ is of the ordere.

. . Using Egs.(15), (208, and(24), one can get the expres-
At order ¢, the cancellations of the secular terms give theSion for theX andY solutions up to ordee. The expansion

conditions parametek can be eliminated if we express the solution as a
2 function of the amplitudeay=e€A,, envelope velocity
n_ vV oA ith V _ 9% 19 Ve=€ve, and wave vectoq;, and we get
aT, . Veigxg With V=5 (199 Vemeve, L
B B 0,2 Y(x,t)=2agsecfw;\(6/2Kp)ag[ Xx— (Vg1 + Ve)t]}
. 2Co
o, ~Vg2 aX1 with ng:—w2 , (19 X cog kx— Q1)+ /2 a3sech{w;\/( 812K ,,)

and the solution of the remaining equations gives the first Xag[x = (Vg1 + Ve t]}{3— cos2rx—201)],
order contributions (269
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q%K_ 1.0 T T T
X(x,t)=2———agseciw,V(8/2K,) (a)
@q
Xag[x— (Vg1 +Vetl}cog kx—Qt), (26b) 0.51 )
where o}
- 0.0 ¥y F
w?=wi+K, g}, wi=4, (273 = v i
Vewi q:1K+ -0.5r + + .
=Q1t—-—= Vag=— 270 ’ L
K=0; K, w2 T, (27b) i
02 (Vet2Vg)Vew?! K2 TLO b ' '
O=w,—a26— - , 30 40 50 60 70
4o, 2woK 2wiwj n
10 ) 10 T T
0= —a"—3B=8. 27¢)
3 B (279 (b)
0.5r .
C. Numerical tests of existence and stability
The exact solutions derived above for a finite chain with = [ .
e " o - 0.0 = 0 o
periodic boundary conditions can be tested for stability in an > o
infinite lattice by numerically solving the equations of mo- 1 + +
tion (3). An initial condition is calculated for a lattice with | A 1
Ny cells, chosen large enough to include all the domains -05 L
where the breather oscillations have a significant amplitude -
(more than~10"" the maximum amplitude Depending on 10 . . . )
the coupling constant this may require<2B,=<40. Then ’
. .9 . S . 30 40 50 60 70
this solution is embedded in a much larger lattice including 0

N cells (N=100 or 200) with two end regions of 10 cells,
where we introduce damping that grows linearly toward the F|G. 2. Exact breather solution fd¢=K'=0.6, Q=1.6. (3)
ends. These damped regions can absorb all the small amptdbne-breather solutiofcentered breatherThis solution is unstable.
tudes waves that could be emitted by an unstable breathaiy) Stable two-breather solutiomoncentered breatherThe dia-
Simulations have been performed with a fifth order Rungemonds and crosses show the initial positions&JgfandV,,, respec-
Kutta scheme or a fourth order symplectic integrator whichtively.
guarantees a perfect energy conservafio®,13. With a
time stepAt=0.01, in the absence of damping, the energy isK,. Numerical tests show that, as far as théstenceof an
conserved to a relative accuracy of Y0over a whole simu-  solution is concerned, the maximum allowed coupling is
lation. This does not depend on the total time interval inveshigh. Figure 2a) shows an example witK =K’=0.6 for a
tigated (typically 20 000 to 80 000 time unitbecause the breather frequencf = 1.6. The Floquet analysis finds, how-
symplectic integrator prevents any drift of the mean value ofver, one eigenvalue equal to 1.3 for this solution, indicating
the energy, although the energy may fluctuate around it rather strong instability. The corresponding eigenvector or
mean value when the time step is large. Using such an intehe numerical simulation can explain the reason for this in-
grator allows us to check the stability of a breather by calstability: in the simulation, after a very short transient the
culating the energ§, within the domain sizéN, that con-  preather radiates a small amount of energy and its center
tained the initial breather. When the breather is perfectlymoves by half a lattice spacing. We recover here a result
stable, the simulation checks tha} stays exactly constant previously found for a discreté* model[14,15: in a dis-
(to an accuracy of 10'). If there is an instability, even very crete lattice a breather centered on a lattice site does not
weak, energy flows away from the domain of siég Thus  always correspond to the stable solution. The stable solution
E, differs from the total energ§ and, when the emitted for the same coupling constants and frequency is shown in
waves reach the damped domains near the bounddies, Fig. 2b). It can be viewed as a breather centebetween
starts to decrease. two lattice sites and will, henceforth, be called a noncentered
breather. In the language of the anticontinuum limit this so-
1. K=K’, one-component system lution should rather be called a “multibreather,” since it is

In order to understand the possible sources of instabilitgenerated by the initial excitation of two sitéks code
of a breather, it is useful to start from the simplest case of 4} i given byo, =1, o —1=1, all others,=0). For
symmetric modelK=K’, which is equivalent to a one- the whole zone of the parameter spage, ({2) which was
component model for the optical motion. The proof of explored, the centered and noncentered breathers have the
existence indicates that breathers exist only below a criticadame domain of existence, and generally only one of the two
coupling K., but it does not provide an explicit value of is stable(the one with maximum actiofigL dt, whereT is
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breather no longer evolves. This behavior is easy to under-
stand because the initial condition was such thaf)2was
inside the optical phonon band@ue to the nonlinearity of
the Morse potential the oscillation at frequerf@yalso gen-
erated a 2() contribution, which was responsible for the
plane wave superimposed on the breather. In a finite lattice

)

o with periodic boundary conditions, this situation is compat-
ible with a finite energy excitation which could be stable, as
shown by the Floquet analysis. But in an infinite lattice, as

: D ] the optical phonons are nonlocalized excitations, the solution
_02F L 3 can no longer be stable, unless it includes a phonon which is
P ] infinitely extended and therefore has an infinite energy. This
~0.3 b L o : E is why the initial condition localized in the region of size
30 40 50 60 70 Ny decays. As the energy and frequency of a breather are
n linked, the decay causes a frequency shift unti{Ris above
0.3 : : S the optical band. This particular example indicates that the
' (b) second condition of existenee() # /" (0), obtained in the
0ok E anticontinuum limit, has to be extended to a nonresonance
condition with the full optical band and not simply the bot-
01F E tom of the band. Frequenci€3 such that ZmQ<wy,
o wherew,, is the maximum of the optical band defined by Eqg.
. 00 soed  Yoe (7), cannot correspond to stable breathers. These unstable
= ‘ frequency bands are indicated by the full lines in Fitp)4
~0.1F ++ : At low K, the bands corresponding to different values of
i ] are separated, but, as the optical band broadens for higher
02k ] coupling, the various instability band overlap and the whole
: D ] frequency rangé€) <wy/2 leads to instabilities due to reso-
-0.3 . % . E nance with the optical band.
30 40 50 60 70 While the instability bands shown in Fig(a define suf-
n ficient conditions for a breather to be unstable, a frequency

Q) outside of one of these bands does not guarantee stability.

FIG. 3. Breather shape fdt=K’=0.1 and=1.04(a) such  While the solution of Fig. @) with (=1.06, i.e., such that
that 2 Q is within the optical band 0€2=1.06 (b) for which 20>, =2.0976 for K=K’=0.1 has no superimposed
2 () is above the optical band. The diamonds and crosses show thghonon as expected and does correspond to a stable solution,
initial positions ofU, andV,, respectively. there are unstable solutions which are not determined by the

forbidden frequencies shown in Figah This is particularly

the period of the breather andthe Lagrangien of the sys- true at high coupling where the breathers are generally found
tem) while the other is unstabld.6]. Thus some instabilities, to be less stable or at low frequency for smidl| because
such as in the preceding example, are not of physical rethe amplitude of the breather becomes then very large. Fig-
evance; they merely imply that, at this frequency, the stableire 5 shows the maximum amplituded £ V) and energies
solution is not the one-breather solution but the noncenteredf the breathers versus their frequencies for a small coupling
“bibreather.” case K=K’'=0.1. The stable breathemgnarked by dia-

This simple example illustrates one channel by which amonds are found in the higher frequency rangexcept for
single breather can become unstable. However, in such the case)=1.04 discussed above which resonates with the
case, this does not mean that a localized solution with theptical bang, but no stable breathers were found for
same frequency does not exist, but merely that the stabl®<0.805, although, according to the forbidden regions de-
solution is not the “one-breather” solution. There are morefined above, one could expect stability for
fundamental sources of instability. FiguréaBshows the ex- wu/3=0.6992<()<1. Figure 5 shows that amplitude and
act solution obtained foK =K’ =0.1,(=1.04. In this case energy rise sharply whe@l decreases below 0.8. This rise is
the amplitude of the oscillations does not decay when onavell described by an approximate solution obtained by as-
moves away from the breather center. The breather appeassming that only the central site, is moving while sites
to be superimposed on a plane wave of optical character ag,=1 are at rest. Such a situation corresponds to an ex-
theU andV displacements are in opposition of phase. In thetremely narrow breather and the motion is simply the motion
Floguet analysis made on a lattice wity=40 cells with  of a particle subjected to the combined action of the on-site
periodic boundary conditions, this solution is found to beMorse potential and the two harmonics springs of constant
linearly stable.However, this is not the case when it is usedK connected to the fixed neighbors. The amplitude and en-
as an initial condition for a simulation in a longer chain with ergy of such a motion can be calculated exactly versus fre-
absorbing ends. Energy flows away from the initial domainquency, and, as shown in Fig. 5, this simplified picture gives
as the plane wave tends to spread out. This decay in breatharrather accurate description of the exact breather solution,
energy is accompanied by a slight increase in breather freand, in particular, explains the sharp rise in energy and am-
quency until the frequency reach€s' =1.0512. Then the plitude found at low frequency.
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FIG. 5. Amplitudes(a) and energiegb) of the breathers for
K=K’=0.1 The diamonds and stars correspond to exact solutions
which are, respectively, stable or unstable. The full line joins the
points corresponding to exact solutions. The dashed line corre-
sponds to the approximate results derived by assuming that only

FIG. 4. Domains of instability for the breather frequency as agne particle is moving, its two neighbors being fixed at their equi-
function of the coupling constari(, (a) for K_=0 and (b) for librium positions.

K_=0.%K, . For each value oK, , the dashed line indicates the
optical phonon band, the dotted line indicates the acoustic band'aqﬂwearly stable and stable in a simulation in an *
the thick full lines correspond to the frequency domains, such thaj
i) is within the optical band, for integer (2<i=<20).

infinite”
fattice. However, the domain of existence and stability of the
two-component breathers is indeed affected by the presence
. . - of the second component. From the results obtained for a
Although the instability bands shown in Fig. 4 do not 4ne_ component breather, we can expect that resonances with
p_r(_)wde a complete_wew of the regions of existence and_stafhe phonon bands may be a major cause of instability. Reso-
bility of breathers in a one-component model, they give,ances ofm() with the optical band are still possible and
however, a rather precise picture of the domain where We.c it in a first set of forbidden frequency bands. For

can expect breathers in a one-component mode. Let.us NOW K" the optical band becomes slightly broader, as shown in
examine to what extent the same ideas can be applied to If’}g. A(b) drawn fork_=0.9K . , i.e., a case where the two
two-component system. sublattices are very differentK( =0.05). Consequently
resonances with the optical band forbid larger domains in the
breather frequencies. But the most important new feature is a
In a two-component system the acoustic degree of freepossible resonance of the breather frequency with the acous-
domX is coupled to the optical variabl. This shows up in tic phonon band. Instead of a higher order coupling
the shape of the breather as illustrated in Fig. 6. Due to thém=2,3, ...) as for theesonance with the optical band, it
different coupling constants along the two chains the ampli€an be a first order coupling becau3ds situated below the
tudes of theU and V displacements are different and optical band, i.e., in a possible frequency range for the acous-
X=(U+V)/\2 no longer vanishes. As mentioned in Sec.tic modes. Figure 4 shows that, for sm&L the gap be-
Il A, this does not prevent the system from having exacttween the acoustic and optical modes disappears completely
localized breathers which are now two-component breathersiroundK . =1.0. Therefore we do not expect stable two-
Figure 6 shows one example of such a solution, which iomponent breathers fé¢, =1. However, for lower values

2. K#K’, two-component system
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FIG. 6. Breather shape fét=0.40,K’'=0.12, and)=1.6. The
diamonds and crosses show the initial positionsUgf and V,,,
respectively, and the dashed line sho¥ys

of K., two-component stable breathers can exist provided
that their frequency lies in the gap between the acoustic
and the optical modes. Moreover, such breathers are suffi-
ciently stable to play the role of attractors for the solution if
we start from a case whel@ is in the acoustic band. As
described above for a case of a resonance with the optical 0 BPG0 [
band, a breather coupled to the acoustic band may loose (C)
enough energy for his frequency to move up above the

acoustic band and reach a domain where the breather is
stable. And even when there is no gap between the acoustic
and optical bands, i.e., when we do not expect any stable \

breather, very long lived localized breathing modes may ex-

ist. This is illustrated in Fig. 7 foK=1.7, K'=0.9, and 0.8770 1 \ ]
0 =1.9. AlthoughK_=0.4 implies a strong coupling with

the acoustic modes &3 is within the acoustic band, a simu- , \

lation over more than 6000 breather periods shows only a 0.8760 \\\\\ 1
small decay of the breather. There is indeed a constant en- \

0.8780 | N g

Energy

ergy loss through acoustic modes as shown in Fi¢®.ahd
7(c), but the breather is, nevertheless, extremely long lived.
Therefore, the numerical results figr= K’ show that, al- 0'875% 5 o5 1o is o
though the coupling between two degrees of freedom pro- ' " Time (10* tu) ) '
vides additional channels for energy loss away from a local-
ized mode, stable two-component breathers do exist. For a _ _ .
FIG. 7. Time evolution of a two-component breather in a system

small coupling constark , their domain of stability is not . . X
very different in a one-component or in a two—componentw't_hOUt g,af bEthen the acoustic and op_tlcal ph_onon bands.
. K=1.7,K'=1.1,Q2=1.9.(a) X component at different times from
S_ys_t_em, as shown by F'gs@ a_nd 4b). For a 'afgeKi the 0 to 20 000 time units. The vertical scale extends fre.05 to
I|m|t|ng_ factor for the stab_lllty is not the coupll_ng with the_ 1+0.01.(b) Y component. The vertical scale extends from.4 to
acoustic modes but nonlinear resonances with the optical 4 The apparent oscillation of the amplitude is due to a beating
bands as for the one-component model. It is also important tBeyyeen the breather period and the recording period. This beating
notice for physical applications that the instabilities exhibitedpecomes slower as the time increases because the breather radiates
by the numerical studies are weak, for both the onexcoustic waves which can be seen(@ This energy loss is asso-
component or the two-component breathers. An “unstable’ciated with a slow drift of the breather frequency to higher values.
breather can oscillate for hundreds or even thousands of pehe beating provides a sensitive way to detect this frequency shift.
riods before decaying significantly, so that even breatherg) shows the breather energyill line) and the total energy of the
detected as unstable in this study can play a role in a physicghain vs time. The decay is due to the acoustic waves emitted by the
system. breather and absorbed by the damped boundary regions.
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FIG. 9. Evolution of the approximate solutions of E86) when

they are used as initial conditions in simulations in a system with
(b) K=0.7,K’=0.5. The stars show the energy vs frequency for each
initial condition. The diamondgconnected to the corresponding
initial point by a dotted lingshow the energy vs frequency for the
steady state solutions reached after 10 000 time ufiitse initial
condition aroundw=0.5 does not converge toward a localized
breather. The crosses connected by the full line show the exact
breather solutions obtained numerically from the anticontinuum
limit.

0.6

breathers can move long distances, as shown in Fig. 8. As for
the one-component breathef®], the pinning of two-
component breathers increases with their amplitude. For in-
stance, wittK =0.15 andK’ = 0.05 a breather generated with
the approximate initial condition wit;=0.1 and an ampli-
tudeay=0.3 is immediately pinned while a breather gener-
ated with a;=0.05 moves at the prescribed velocity
V.=0.01.

FIG. 8. Moving breather generated by the approximate solution Figure 9 compares the energy-frequency dependence of
(26) with K=0.7,K'=0.5,q,=0.1,V,=0.01.(a) AmplitudesU, the exact solution with that of the approximate soluti2f),
amplitudes of the maxima are due to sampling effects; however, thBas settled to a quasistable breather in a simulation. Al-
maximum energy density shows a slow decay. though the initial breather parameters given by the approxi-

mate solution may be significantly different from the param-

Up to now we have considered only exact initial condi- eters of the exact solution, particularly for the frequency,
tions obtained by starting from the anticontinuum limit. It is Fig. 9 shows that, in a broad range of parameters, the ap-
useful to examine also the validity of the approximate solufproximate solution gives an initial condition that evolves to-
tions derived in Sec. Il B, in particular, because E(6)  ward an exact solution of the two-component model. Only
and(273 can correspond to breathers which are moving withthe initial condition with {=0.56 obtained withay;=0.6
respect to the lattice. Figure 8 shows one example of suchwahich corresponds to a narrow large-amplitude breather,
solution. The initial condition shows a fast evolution charac-which is certainly not properly described by the approxima-
terized by a decay of its amplitude and energy density byiions leading to Eq.(26) failed to converge to a stable
about 15% and an emission of small amplitude radiationsbreather. This is another indication of the good stability of
Simultaneously the frequency increases fréb+=1.64 to the two-component breathers since they can be generated
(=1.83. Then the solution is fairly stable. However, thefrom a initial condition which is far from exact.
velocity shows a slow decay and there is a weak energy loss The broad breathers obtained from the NLS equation are
that persists. This is because moving breathers are not exawiobile in the lattice because their width is much larger than
solutions of the discrete lattice. We have discussed, for théhe lattice spacing and discreteness effects are averaged out
one-component case, the difference in energy between than the spatial scale of the breather. There are other situations
centered and noncentered breathers. The same is true foirawhich discreteness effects can become weak, even for
two-component breather. Discreteness effects are responsiblarrow breathers. As mentioned above for the one-
for the continuous energy loss that will eventually lead to acomponent modeK=K’, a breather centered on a lattice
pinning of the breather at some site in the lattice. Howeversite does not always correspond to the stable solution, which
for the rather strong coupling . =0.6, large amplitude may be associated with the noncentered, or multibreather
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[16], solution. Scanning through the breather frequencies onahere H,(t) is the energy density at site extracted from

can check that there may be several values which corresportde Hamiltonian(2). As the big breather is highly localized,

to an exchange of stability between centered and noncenhe value of 11 sites is large enough to capture almost all its
tered breathers. This feature, first noticed for tfemodel  energy, and small enough to separate its energy from that of
[14], has been studied in detail for the one-component modehe small breather, except during a small time interval
[17,18. When an exchange of stability occurs, these studiesround the collision. We then define the transfer of energy
show that even very narrow breathers can become very mdrom the small breather to the big on®E(t), and the dis-

bile in the lattice. The same exchange of stability betweerplacement of the large breath&n,(t) as

centered and noncentered breathers is found for the two-

component model as for the one-component case. E1(t)—E1(0)

AE,(t)= E,(0) Any(t)=ny(t) —ny(0)

(29
IV. INTERACTIONS BETWEEN LOCAL MODES

AND LOCALIZATION OF THERMAL FLUCTUATIONS where E;(0) is the initial energy of the big breather and
E,(0) is the initial energy of the small breather. With this

As the preceding section shows that two-componentiefinition AE,=1 if the big breather absorbs all the energy
breathers are sufficiently stable to play a role in a physicapf the small one and\E;=0 if no energy has been trans-
system, it is important to study how they could be generategerred. In order to also investigate how the energy transfer is

in a real system. We examine here a mechanism which hagyjit between the optical and acoustic motions, we compute
been shown to lead to large amplitude breathers in onehe quantities

component systems, the collision between breathers with dif-
ferent amplitudes in a discrete lattité], and then we inves- EJ(t)—E}(0) EY(t)—EJ(0)
tigate the spontaneous localization of thermal fluctuations. AEI(t)= W = W (30

where the quantitieg, EJ denote the optical and acoustic
contributions to the energy of the big breather calculated
The investigations have been carried out along the samggom the expression of the Hamiltonian as a function of the
lines as in the study of the one-component system. We arg andY variables. Notice thaAE}(t) and AE}(t) are al-
interested in the energy exchange between the collidingyays normalized by the total energy of the small breather.
breathers. The studies of the one-component model havehe quantities\ E, (t), AEX(t), AEY(t) show a fast variation
shown that the exchange is larger when the two collidingyyring the collision process and then stay almost constant,
breathers have significantly different amplitudes. This is unythough the big breather, perturbed by the collision, is no
derstandable because for two identical breathers, owing tRnger an exact solution and may radiate a small amount of
the symmetry of the roles played by the two excitations, thesnergy for some time after the collision. Therefore it makes
energy exchange has to vanish. We consider here collisiongnse to speak of the values of these quantities “after” the
between a large amplitude breather, henceforth called the bigyjision without specifying their full time dependence. This
breather, which is initially fixed with respect to the lattice, js generally not true foAn,(t) because, except for the most
and a mobile small-amplitude breather launched with an iniyjscrete case, the big breather is often set into motion by the
tial velocity toward the big breather. The big breather is ancyjjision, In this case\n, is simply calculated from the final
exact solution so that its energy is well defined and can b%)sition n,(t) at the end of a simulation and its large value
measured accurately. The small breather is an approximalgests that the breather has gained a nonzero velocity in the
solution given by Eqs(26). As breathers are excitations with jjision.
an internal degree of freedom, the outcome of their interac- Figure 10 compares typical results of two sets of 200
tion depends on their relative phases at collision time. Conggjiisions for the symmetric cagé=K'=0.6 and the two-
sequently to analyze the mechanism that could lead to th@omponent modeK=0.7, K’ =0.5. The big breather is the

formation of large breathers in a real system, we must Scagxact solution with frequency,=1.70, initially centered at

all the relative phases of the two excitations. This is achievedie 100 of a 200 cell lattice and the small breather calculated
by statistical sampling. We simulate 200 collisions with the ith q,=0.1 has an average amplitude parameigr0.15

same big breather and various small breathers with initiar\//ariance 0.0 an average velocity,+ V,, = 0.2 (variance
positions and initial velocities chosen at random with a ' e’ -

) T 0.1, and an average initial position 7A@ariance 10 The
G%Ltﬁs'??h d|§_tr|tb_l;tl?_n a_rourr]nd sellected meanh ;/alues. Tnﬁgure shows histograms of the probability distribution of the
width of the distribution 1S Chosen large enough to COVer alg o gy transferd E,, AEY, AEX and displacements of the

relative phase_s during the mtgr.actlon and scan a rather bro%qg breatherAn,. The results of the two-component model
range of amplitude and velocities of the small breathers.

To examine the collision quantitatively, we define the en_are very similar to the results obtained earlier on the one-
ergy of the big breatheE,(t) as the sum of the energy component modgK]. They showthat the mechanism of en-

. . . ..ergy localization through breather collisions appears to be
density on the 11 sites centered around its central S'tSeneraI and not restricted to a very simple one-component

A. Collisions between breathers

ny(t) nonlinear lattice. Although Fig. 10 shows that the energy
ny(t)+5 transfer in favor of the big breather is slightly larger for the
Ei()= D Ht), (28)  symmetric caseK=K'=0.6 than for the two-component

ny(t)—5 modelK=0.7 K’'=0.5, for both models, the distribution of
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FIG. 10. Energy exchange in sets of 200 breather collisionKfor 0.6. The dashed lines show the resultsker K’ =0.6 and the full
lines show the results for the asymmetric cise0.7,K’ =0.5. (a) Histogram of the total energy exchany&; showing the probability of
a given value oAE; vs AE,. Each histogram is generated by dividing the full rang& Bf, observed in the 200 collisions into 40 intervals
and counting the collisions falling in each intervéd) Histogram of the energy transfer to the optical motidEY . (c) Histogram of the
energy transfer to the acoustic motidiE} . For the symmetric cask=K'=0.6 the acoustic motion is completely decoupled from the
optical one and thudE] is always equal to 0(d) Histogram of the displacement of the big breathAer;. The large peak ahn,;=—25
corresponds to the big breathers put into motion after the collisions, which have reached the limit of the investigated domain at the end of
the simulation.

energy transfer is clearly biased toward positive valoedy  rare events, on average only 10% to 15% of the energy of the
very few cases in the 200 collisions result in an energy lossmall breather is lost in favor of the big one and the small
for the big breather Therefore random collisions between a breather passes through the big doe in some rare cases is
small and a large breather tend to increase the energy of theflected. The results shown in Fig. 10 do not correspond to
larger breather. One should notice however that the collia particular case. In all cases that we have investigated where
sions do not result in a complete absorption of the smallve started from &stable big breather, we obtained similar
breather by the big one. AlthougkE; reached 0.8 in some results. The energy transfer in favor of the big breather is
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larger when the discreteness effects are larger, but it is still 2.50
observed folK , =1.0 (K=K’'=1.0 orK=1.1,K’=0.9) or § (a)
for higher big breather frequencies such ag=1.8 for 225 |

K=K’'=0.6 orK=0.7,K’=0.5. The distribution of the en- _
ergy between the optical and acoustic motions shows that 200
most of the transfer concerns the optical motion. Figure
10(c) shows thatAE] does not exceed 0.02, whilaE)
reaches 0.6 in several cas@solated cases up to 0.8 have
been observed If we start from anunstablebig breather, 150
which has a slow decay when it is left unperturbed such as

the noncentered breather fii=0.7, K'=0.3, w,=1.5, the 195 . : . .
average value oAE; is negative. This is not surprising and o o 5000 7500 10000 12500 15000
it simply indicates that the collisions that perturb the unstable Time

breather accelerate its decay. This may also give a clue to the

origin of the energy transfer in favor of big breathers because = 225
it suggests that it is the most stable excitation which tends to i (b)
gain energy. We do not have exact analytical solutions for

Energy

1.75

. . ) i 200 |
the discrete breathers. This precludes any analytical estimate
of the energy transfer which would require an accurate de- _, T
scription of the collision since it is a small effect. However, £ 1.75
the proof of existence of the discrete breatH&;8], which b

indicates that there is a minimum value of the amplitude
below which exact localized solutions no longer exist, sup-
ports the idea that big breathers are more likely to exist as -
localized excitations and therefore more likely to gain energy 125
in collisions with small amplitude breathers which are only o 12500 25000 87500 50000
approximate solutions. Time

Figure 1@d) shows that the displacement of the big
bree!ther 'S often large and negative, i.e., in the d're_Ct'on of FIG. 11. Time evolution of the energy of a big breather under-
the incoming breather. The large peakfat,;=—25 arises  y4ing multiple collisions with small breathers. The energy is mea-
from the big breathers that were put in motion with a negasyred in an 11 cell window around the center of the big breather.
tive velocity after the collision. The high mobility of the big gach peak corresponds to a collision, when the small breather is
breather is due to the rather high couplikg = 0.6 for this  inside the measurement windova) K=K’ =0.6, w,=1.7 and(b)
set of simulations and it is enhanced after the collision bex=0.7,K’=0.5, w,=1.7. Note that the time scale is not the same
cause small amplitudes which are radiated in the nonelastia the two figures. In casé) we show a larger number of colli-
collisions tend to induce a diffusion of the breather. sions. When the breather is driven up to an energy for which it is

In the previous studies, a big breather is hit once by aot stable it can show a sharp decrease and then grow again under
small breather. The observed transfers of energy suggest ththe effect of subsequent collisions.
it is possible to raise progressively the energy of the big
breather by multiple collisions. Figure 11 shows that this isjnitial condition. If energy localization is to be important in a
indeed true, but the energy of the big breather is limited byphysical system, it has to occur naturally from the energy
the limit Stablllty determined in Sec. lll C. The initial colli- which can be brought to the System, i_e_' from thermal en-
sions cause a large energy increase and the energy gain dggy. We know that this is possible in a one-component
cays to zero when we reach a high energy, corresponding @ odel[5]. The question that we want to address in this sec-
low frequency, for which the isolated breather was found tation is: is it still true in a multicomponent model where en-
be unstable. This result is consistent with the energy decayrgy could be Spread out by the acoustic modes? In order to
described above for the collisions with an unstable biganswer this question, we have simulated the dynamics of the
breather. Although breather collisions can lead to energy Iofattice in contact with a thermal bath at constrained tempera-
calization in the nonlinear lattice, they cannot drive atyre. This is achieved with an extended version of the'Nose
breather into an energy-frequency range where it would bejoover method19], which completes the system by adding
unstable, which puts an upper bound on the maximum eng small number of extra degrees of freedom, called “thermo-
ergy of a localized excitation in the lattice. Multlple colli- stats” which are Coup|ed in a nonlocal way to all the phys|-
sions cannot only boost the energy of a large stable breathefal degrees of freedom of the lattice. It can be shown that a
they can also prevent a weakly unstable breather from decaynicrocanonical simulation of the extended system results in
ing, as illustrated in Fig. 12. canonical equilibrium properties of the physical system of
interest. We use a chain of three thermostats which provides
good ergodic properties and we have checked that the first
and second moments of the kinetic energy of the nonlinear

Breather collisions provide a mechanism for energy localdattice have their values expected in the canonical ensemble.
ization in a nonlinear lattice, but the studies described above The numerical simulations confirm the results of the pre-
to illustrate this mechanism consider a specially preparedious sections which indicate that the multicomponent model

B. Spontaneous localization of thermal fluctuations
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(a) (b)
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FIG. 12. Time evolution of the energy of a weakly unstable big
breather undergoing multiple collisions with small breathers.
K=0.7,K’=0.5. The big breather has frequeney=1.4 and the
small breathers have an amplitude paramager0.15 and a veloc-
ity 0.15. The full line shows the energy of the big breather under-
going multiple collisions with incoming small breathers. The dotted
line shows the time evolution of the energy of the same big breather
without the collisions. It slowly decays until it reaches a stable state
with a lower energy.

exhibits most of the properties of the one-component nonlin-
ear lattice. Spontaneous localization of energy does occur in ) _ . .

the multicomponent nonlinear lattice as illustrated in Fig. 13, F'G- 13. Comparison of the properties of a lingaarmonic
which compares the case of the nonlinear lattice, describe@Sit€ potentialand nonlineaiMorse on-site potentiathermali-
above to a harmonic lattice obtained by replacing in HamiI-ZEd lattice. The coupling constants ate=0.3, K'=0.1 for both

tonian (2) the on-site Morse potential by the harmonic po- :f"tt'ces' ;he tir;perzt\l;rg_r?lo.s n enerfgmur:;_tfsf. The Igra}y scale

tential (U,,—Vy)? which yields the same linear dispersion 'gures show thes an 'splacements of the Gifferent lattice sites
n N has b btained f d v di vs time. The horizontal axis extends along the lattice which has 128

curves. Figure 13 has been obtained for a moderately 'ScreE%lls with periodic boundary conditions. The vertical axis is the

caseK,=0.2, and a large asymmetry between the tWOiye axis. It extends over 1000 time units, i.e., 500 periods of the
chainsK=0.3,K’=0.1, i.e.,K_=0.1in order to illustrate & |owest optical mode(a) Harmonic on-site potentialk,, (acoustic
case where the two types of displacemeKtsand Y are  gisplacements Gray scale fromX<—10 (white) to X>+ 10
strongly coupled. For other values of the parameters, the rgplack); (b) harmonic on-site potential,, (optical displacements
sults are qualitatively similar but the tendency to localizationGray scale fromy<—1 (white) to Y>+1 (blacK; (c) Morse on-
decreases wheld , increases, as one might expect from thesite potential: X,, (acoustic displacements Gray scale from
previous sections, which have shown that the domain of exX< —10 (white) to X>+10 (black); (d) Morse on-site potential:
istence of local modes is larger for a weak coupling. Y, (optical displacements Gray scale fromY<—0.5 (white) to
Figure 13 shows that the harmonic and anharmonic lattic& > +5 (black.
have very similar behavior for the acoustic motions. This
was expected because, even for the Morse on-site potentidhe rather weak coupling that we consider higre=0.2, the
the equation of motion foX, [Eq. (6@ ] is linear. The only dispersion of the optical branch is small so that all modes
nonlinearity comes indirectly from the coupling with the have a similar amplitude. This results in the almost uniform
Y, displacements. It appears on a plot of the space-time Fowgray tone of Fig. 1&) that shows th&'(t) displacements in
rier transformS, (g, w) = F(| X,(t)|?), which shows a broader the harmonic lattice. The calculation ofS,(q, w)
dispersion curve for the anharmonic lattice than for the=F(|Y,(t)|?) in this case reveals the expected dispersion
purely harmonic lattice. Th& displacements appearing in curve of the optical phonon modes. For the anharmonic lat-
Figs. 13a) and 13c) are dominated by the lowest frequency tice, Fig. 13d) shows that, on the contrary the notion of
mode with wavelengti=2N in units of lattice cells be- nonlocalized phonon modes completely loses its meaning.
cause, for a given energy, it is the mode which has the largedfoving along any horizontal line in Fig. 18), i.e., moving
amplitude. The calculation db,(q,w) which shows a well along the lattice for a given instant of time, one crosses re-
defined maximum around the acoustic dispersion curve, ingions with very largeY, (up to Y,~15.0) next to regions
dicates that an interpretation in terms of the linear phononwhereY, is small (—0.5<Y,<0.5). And it is remarkable
modes is meaningful for both the harmonic and the anharthat this pattern is almost conserved if one considers a time
monic lattices and that all modes are excited, as one camanslation by moving the observed line up or down. In fact
expect from a thermalized system. one can notice in Fig. 18) almost vertical lines where black
On the contrary the optical motions are extremely differ-and white spots alternate. They correspond to cells that os-
ent for the harmonic and anharmonic lattices. For the hareillate betweenY<—0.5 and Y>5.0 while nearby cells
monic lattice, the results can be interpreted in terms of equishow only a very small amplitude motion. These lines are
partition of energy among nonlocalized phonon modes. Fosimply the local modes that we analyzed in the previous
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V. ROLE OF BENDING ON DNA OPENING

The mechanism by which RNA polymerase opens locally
the DNA double helix to initiate the transcription is not
known, but there is experimental evidence that it involves a
bending of the double helik,7]. Although it cannot claim
to describe accurately the actual effect of the bending of a
three-dimensional helix, the two-component model can bring
insight into this mechanism. Using a simple mechanical
model of the double helix, it is easy to observe the effects of
a local bendii) Bases inside the bend are brought closer to
each other while the ones which are outside increase their
relative distance. This must modify the stacking interaction,
increasing the coupling constant on the strand inside the
bend while simultaneously decreasing the coupling constant
along the outward strandi) A local unwinding of the helix
occurs in the middle of the bent region while the two regions
next to the bend on both sides are on the contrary slightly
more twisted. This is due to the rigidity of the two strands
entangled in the double helix.

Molecular dynamics studi¢20] show that DNA bending
is accompanied by a significant reduction of the opening
energy of the base pairs, which can be considered as the
consequence at the microscopic level of the mechanical ef-
Fig. 13 in the anharmonic lattice fdr=0.3. The lattice parameters fects mentioned above. Contrary to the one-component
are the same as for Fig. 13. Gray scale frofsc0 (white) to mode!, the two-component mF’de' has enough freedo_m_to
Y>+1.5 (black describe both of these mechanical effects. The local variation

of the stacking, which leads to different coupling constants

) _ on the two strands, simply corresponds to local changes in
sections. They have been formed thermally and, at the higk andk’. The local bending corresponds to a local deviation
temperaturel = 0.8 (in energy units, to be compared to the of the acoustic degree of freedoky, from its equilibrium
dissociation energy equal to 1 for the Morse potentiaht  zero value. This is not an equilibrium state of the free mol-
we have investigated to generate Fig. 13 some modes haveegule, which would be straight, but it can be obtained by
very high amplitude and low frequency. These local modesmposing on theX,, local constraints that correspond to the
give rise to a very large central peak $)(q,») while the  action of the bending protein. In the actual bending of DNA
optical phonon branch is no longer visible. It is important toboth mechanical effects occur simultaneously. However, for
notice that, if one considers the behavior of the nonlineaa better understanding of their influence on the localized
lattice on a time scale of the order at=200 [one-fifth of  modes, we have considered them separately.
the time interval shown in Fig. 18)] there is no equiparti- In order to investigate the effect of a local variation of the
tion of energyamong the various lattice sites. The sites withstacking interaction, we have simulated cases wherek'
a large amplitude breather mode have a significantly highe?lmost everywhere, except in a central region of the chain,
energy density than others. While the largest breathers sed¥tending over 20 cells, wheke#K'. The influence of such
in Fig. 13d) do not have a long lifetime, which is consistent an extended defect on moving breathers depends heavily on
with the fact that they have been found to be unstable in Sedh€ choice of parameters. It may cause breather reflection,
IIl, smaller breathers created thermally can persist for at leadfMPOrary trapping, or on the contrary a speed-up when the
50 to 100 oscillation periods. Equipartition of energy is only reather passes thr_ough the perturbed region. C_onse_quently,
recovered if one averages over a much longer time scal%lthouqh one can find some parameter range in which the

. . - . “defect causes breather trapping and therefore promotes DNA
t(z)ympI((:)?”tﬁscli/cl)otr(;elgg?eggglo ds of the oscillations in the bot opening, the rather weak effect of stacking alteration and its

. . — sensitivity to parameters suggest that it is not the main mode
The simulation shown in Fig. 13 shows that thermal fluc- youp 9

. f-locali f h h , of action of RNA polymerase.
tuations can self-localize to form the breather modes inves- \merical simulations of the direct effect of bending in-

tigated in the preceding section. This simulation has beeRjcate that the geometrical deformation induced by the en-
performed for the high temperatufe= 0.8, but the formation zyme can play a more systematic role to favor opening than
of breathers is observed at much lower temperatures such gse change that it induces on the coupling constants. Struc-
T=0.3, as shown in Fig. 14. However, at such low temperatyral studies of the DNA protein complex show that, in order
tures, the calculation d,(q,») shows a broad optical band to bend DNA, RNA polymerase makes contact with the helix
in addition to the central peak, which indicates that extendedh two regions[21,22. This can be simulated by imposing
modes coexist with the localized breathers although their freeonstraints on th&,, in two regions around the center of the
qguency is below the frequency given by the linear dispersiobend. We assumed a linear variation of ¥ein these con-
curve. strained regions through the conditions

FIG. 14. Optical displacements, shown with a gray scale as in
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for O<i<ny, 0.8 [T
(31) I
0.6 ]
wheren, is the index of the central site of the bemg, gives I |
the distance, in cells, from the center of the last bases con- : ]
strained by the protein, anuly is the width of the two con- 0.4r ]
tact regions[to improve the readability of the indices we ;
have used the notatiod(n) instead ofX,]. The equilibrium ozl
configuration is obtained by minimizing the energy of the 1
lattice with all other degrees of freedom allowed to evolve. i
Figure 15 shows an example of the shape of a relaxed lattice 0.0~
with K=0.2, K'=0.8, n,=10, andny=9. The bend im-
posed on the acoustic coordinatenduces a local variation :
of the base palr_stretchm\g whlch is positive in the central 170 180 190 200 210 220 230
part (corresponding to local unwindingnd negative on the I
two sides of the bendcorresponding to base in a pair
squeezed togetherThis is consistent with the shape ex- (%)
pected from the mechanical properties of a three-dimensional o e .
helix. One can notice that, K andK’ are exchanged, i.e., if L2 :
we bend the lattice with the strongest strand inside the bend, 10 i j
in the planar two-chain model, the bend tends on the contrary f X ]
to close the base pairs in the center. O.8£ 7Z s
The small value ofY in the vicinity of the bend shows L 7[ X
that, in the two-chain model, the coupling between bending 0.6F \
and opening, which is only due to the asymmetr¢ K’ is < t j \
weak compared to the coupling imposed by the three- 0.4 % \
dimensional structure of DNA. It has, nevertheless, a signifi- \
cant effect on the localized modes. We have studied it nu- 0.2 f \ ]
merically with a method very similar to the one used to study M L
breather collisions in Sec. IV. The big breather is simply 0.0 i e ’J
replaced by the bend and small breathers with a Gaussian 0 J . } ‘ L
distribution of amplitude, and velocities are sent toward the 170 180 190 200 210 220 230
bent region. The simulations are performed in terms of the n
variablesX, andY,, which allows us to maintain the bend
by constraining the appropriat€, coordinates as described (@)
aboye. The energy in the reg|m—2nbsnsnc+2n_b is 0.010 [ s ,
monitored versus time, as well as the energy density in the
lattice. N
As one might expect, the results depend on the character- 0.005 L f ]
istics of the bend, i.e., its spatial extensi@etermined by ' ;H
n, and ny,) and its amplitude(determined bya). Broad ”\
bends are almost transparent to localized modes. On the con- l
trary, sharp bends restricted ng,=3 or 4 cells can reflect > 0.000 & it e g
most of the incoming local modes because their width is MH’T /
comparable to the width of the localized modes in a rather I ‘/ |
discrete lattice K, =<0.5). This may have some conse- —0.005 - \“ E
guences on the biological function because proteins often \{ |
bend DNA sharply (90° bends resulting almost entirely in
two 40° kinks extending only on a few base pairs have been ~0.010 { N , ‘

observed 7]). Studies of the two-chain model suggest that
such bends could be very efficient in preventing the trans-
mission of localized excitations, and even linear phonon
modes, across the bend region. Two such bends would al-

170 180 190 200 210 220 230

n

FIG. 15. Relaxed structure of the two-chain lattice in the pres-

most isolate one region of the molecule from the remainingsnce of a bending constraint o, with n,=10, ny=9, «=0.12.
parts regarding the transmission of thermal fluctuations, andshe coupling constants a#=0.2, K'=0.8. (@) U,, andV, coor-

for instance, energy delivered between the two bends by @inates of the particlegb) X,. The constrained sites correspond to
chemical reaction would hardly flow away. Figure 16 showsthe two inclined linear parts of the curv&) Y,. The base-pair

the effect of a moderate bend=10,ny=9, =0.12, cor-  stretching induced by the bend is small and does not appear clearly
responding to the relaxed structure shown in Fig.. THe  in (a).
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VI. CONCLUSION

The model considered in this work was initially motivated
by the study of DNA denaturation, but the most important
results are probably the general conclusions that can be
drawn for nonlinear energy localization in lattices. Studies of
one-component lattices had previously shown that intrinsic
local modes, due to nonlinearity, could exist in homogeneous
lattices and that these modes could be spontaneously formed
through localization of thermal fluctuations, one mechanism
of their growth being energy exchanges in collisions that
tend to favor the largest excitation. Consequently local
modes could appear as involved in several physical phenom-
ena, such as DNA denaturation, because they were likely to
: — E— form in a nonlinear lattice as soon as the temperature was not
0 € 4 6 8 too low.

However, in spite of these remarkable properties the rel-

(b) evance of local modes in a real system could be questioned

: S because the vast majority of physical systems require a mul-

R § ticomponent description. Extra degrees of freedom provide
| TEeEse | additional channels for energy transfer so that it was not
Py oo i clear whether local modes could persist long enough in a

LT

Tl ] realistic system to play a significant role. Using a two-chain

s 1 model, we have shown that they do exist as exact solutions
B and that they have a broad range of stability. Moreover, we
ForRee ] have shown that, even when we chose on purpose a case

- = =3

IR A 1 where a local mode should decay because its frequency reso-
reemesnI s ] o nates with a mode corresponding to another degree of free-

I dom (a phonon mode of the acoustic brajcthe decay is
very slow. The lifetime of local modes is thus large enough

% ] to allow them to play a role in a physical process. Perhaps,
0
n

more importantly for the physics, we have shown that the
mechanism of growth of the local modes through energy
exchange in collisions is still active, and that the spontaneous
FIG. 16. Effect of a bend on incoming moving localized exci- {r?rtrr?gttl\(l)vg-?:foﬁca(l)lnne]g:j’fnsol(;]e?zgzeitr rgggéeig ;yjfrzg_tfgas g:?éft
tations in the two-chain model. The parameters of the model and the P P

constraints imposed to create the bend are the same as for Fig. ]t?se. Of course, physical systems are often complex and a

(a) Energy density in a window of sizeng centered on the bend vs Wq-component order param.eter may not be enough to de-
time (in dimensionless time unitsEach spike corresponds to an scribe them. Let us emphasize, hOWever_, that moving from
incoming moving breathetb) Contour plot of the energy density in ON€ component to two components isjaalitative jumpbe-
the two-component chain vs time. The bend is centered on the sie@US€ We start providing external channels for the decay of
n=0 and the breathers are launched every 4000 time units from sit9cal modes. Adding more than two components in a one-
— 100 with a positive velocity. They appear on the figure as lines ofdimensional model may increase the decay rate of localized
oval shaped patterns which are generated by the sampling of tH&odes, but does not bring a qualitative change. It may hap-
breather energy density every 100 time units. pen that more components close completely the gap that
separates the optical branch carrying the local modes from
the other branches associated with the other degrees of free-
moving localized modes sent toward the bend had an ampldom. But we have verified that, even when localized modes
tude ay=0.15 (with a standard deviatiomr=0.02) and a resonate with extended linear modes their lifetime may be
velocity 0.1 (¢=0.01). Figure 1@), displaying the time very large.
evolution of the energy in the bent region, shows that the One should, however, notice that the present results are
bend can act as aenergy collector While a few localized restricted to a one-dimensional model. Investigations of mul-
modes pass through or are almost totally reflected, as showitidimensional latticeg1] have already shown that they can
in Fig. 16b), many of them are captured at the bend or atsustain local modes. The question of their spontaneous for-
least abandon a large part of their energy in the bent regiomation is still open, and currently under study. We have
in the bent region. As a result the fluctuational opening of theconsidered here nonlinear lattices with an on-site potential.
base pairs increases drastically in the bent region. If the samedcal modes exist also in the presence of nonlinear coupling,
mechanism could operate in the three-dimensional structuneithout substrate potential, but their properties in multicom-
of DNA, it could explain how the RNA polymerase could ponent systems or in the presence of thermal fluctuations
create a transcription bubble without bringing in energyhave yet to be studied.
through chemical reactions. Regarding the application to DNA, our results have to be
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taken with caution because the two-chain model lacks a funeould act as an “insulator” for the transmission of informa-
damental ingredient, the helicoidal structure of DNA. It is, tion by large amplitude fluctuations along the DNA mol-
however, important to notice that the local modes that weecule. These two aspects will deserve further investigations
proposed earlier as possible candidates to describe the flucencerning their biological implications.

tuational openings observed experimentally still exist if we
consider a more reaI|§t|c DNA mO(_jeI tha_n the one- ACKNOWLEDGMENTS
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